Skip to main content

Periodic Homogenization and Effective Mass Theorems for the Schrödinger Equation

  • Chapter
Book cover Quantum Transport

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1946))

Abstract

The goal of this course is to give an introduction to periodic homogenization theory with an emphasis on applications to Schrödinger equation. We review the formal method of two-scale asymptotic expansions, then discuss the rigorous two-scale convergence method as well as the Bloch wave decomposition. Eventually these tools will be apply to the Schrödinger equation with a periodic potential perturbed by a small macroscopic potential. The notion of effective mass for the one electron model in solid state physics will be derived. Localization effects will also be considered

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, J.H.: Genericity of simple eigenvalues for elliptic pde’s, Proc. A.M.S. 48:413–418 (1975).

    MATH  Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence, SIAM J. Math. Anal. 23(6):1482–1518 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  3. Allaire, G., Capdeboscq, Y., Piatnitski, A., Siess, V., Vanninathan, M.: Homogenization of periodic systems with large potentials, Arch. Rat. Mech. Anal. 174, pp.179–220 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. Allaire, G., Conca, C.: Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures et Appli. 77:153–208 (1998).

    MATH  MathSciNet  Google Scholar 

  5. Allaire, G., Palombaro, M.: Localization for the Schrödinger equation in a locally periodic medium, SIAM J. Math. Anal. 38, pp.127–142 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  6. Allaire, G., Piatnistki, A.: Homogenization of the Schrödinger equation and effective mass theorems, Comm. Math Phys. 258, pp.1–22 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  7. Allaire, G., Vanninathan, M.: Homogenization of the Schrödinger equation with a time oscillating potential, DCDS series B, 6, pp.1–16 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  8. Bakhvalov, N., Panasenko, G.: Homogenization : averaging processes in periodic media, Mathematics and its applications, vol.36, Kluwer Academic Publishers, Dordrecht (1990).

    Google Scholar 

  9. Bechouche, Ph.: Semi-classical limits in a crystal with a Coulombian self-consistent potential: effective mass theorems, Asymptot. Anal. 19, no. 2, pp.95–116 (1999).

    MATH  MathSciNet  Google Scholar 

  10. Ben Abdallah, N., Pinaud, O.: Multiscale simulation of transport in an open quantum system: resonances and WKB interpolation, J. Comput. Phys. 213, no. 1, pp.288–310 (2006).

    Article  MathSciNet  Google Scholar 

  11. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures, North-Holland, Amsterdam (1978).

    MATH  Google Scholar 

  12. Bloch, F.: Uber die Quantenmechanik der Electronen in Kristallgittern, Z. Phys. 52, pp.555–600 (1928).

    Google Scholar 

  13. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam (1973).

    MATH  Google Scholar 

  14. Brézis, H.: Analyse fonctionelle, Masson, Paris (1983).

    Google Scholar 

  15. Buslaev, V.: Semiclassical approximation for equations with periodic coefficients, Russ. Math. Surv. 42, pp.97–125 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  16. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston (1990).

    MATH  Google Scholar 

  17. Cazenave, Th., Haraux, A.: An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, 13, Oxford University Press, New York (1998).

    Google Scholar 

  18. Cioranescu, D., Donato, P.: An introduction to homogenization, Oxford Lecture Series in Mathematics and Applications 17, Oxford (1999).

    Google Scholar 

  19. Conca, C., Orive, R., Vanninathan, M.: Bloch approximation in homogenization and applications, SIAM J. Math. Anal. 33:1166–1198 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  20. Conca, C., Planchard, J., Vanninathan, M.: Fluids and periodic structures, RMA 38, J. Wiley & Masson, Paris (1995).

    Google Scholar 

  21. Conca, C., Vanninathan, M.: Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math. 57:1639–1659 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  22. Dal Maso, G.: An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston (1993).

    Google Scholar 

  23. Dimassi, M., Guillot, J.-C., Ralston, J.: Semiclassical asymptotics in magnetic Bloch bands, J. Phys. A 35, no. 35, 7597–7605 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  24. Fermanian-Kammerer, C., Gérard, P.: Mesures semi-classiques et croisement de modes, Bull. Soc. Math. France 130, pp.123–168 (2002).

    MATH  MathSciNet  Google Scholar 

  25. Fermanian-Kammerer, C., Gérard, P.: A Landau-Zener formula for non-degenerated involutive codimension 3 crossings, Ann. Henri Poincaré 4, pp.513–552 (2003).

    Article  MATH  Google Scholar 

  26. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques, Ann. Ecole Norm. Sér. 2 12, pp.47–89 (1883).

    MathSciNet  Google Scholar 

  27. Gelfand, I.M.: Expansion in series of eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk. SSSR 73, pp.1117–1120 (1950).

    Google Scholar 

  28. Gérard, P.: Mesures semi-classiques et ondes de Bloch, Séminaire sur les équations aux Dérivées Partielles, 1990–1991, Exp. No. XVI, 19 pp., École Polytech., Palaiseau (1991).

    Google Scholar 

  29. Gérard, P., Markowich, P., Mauser, N., Poupaud, F.: Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50, no. 4, 323–379 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  30. Gérard, C., Martinez, A., Sjöstrand, J.: A mathematical approach to the effective Hamiltonian in perturbed periodic problems, Comm. Math. Phys. 142, no. 2, 217–244 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  31. Guillot, J.-C., Ralston, J., Trubowitz, E.: Semi-classical methods in solid state physics, Comm. Math. Phys. 116, 401–415 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  32. Jikov, V.V., Kozlov, S.M., Oleinik., O.A.: Homogenization of Differential Operators and Integral Functionals. Springer Verlag, (1994).

    Google Scholar 

  33. Kato, T.: Perturbation theory for linear operators, Springer-Verlag, Berlin (1966).

    MATH  Google Scholar 

  34. Kuchment, P.: Floquet theory for partial differential equations, Operator Theory: Advances and Applications, 60, Birkhäuser Verlag, Basel (1993).

    MATH  Google Scholar 

  35. Lions, J.-L.: Some methods in the mathematical analysis of systems and their control, Science Press, Beijing, Gordon and Breach, New York (1981).

    MATH  Google Scholar 

  36. Magnus, W., Winkler, S.: Hill’s equation, Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney (1966).

    MATH  Google Scholar 

  37. Markowich, P., Mauser, N., Poupaud, P.: A Wigner-function approach to (semi)classical limits: electrons in a periodic potential, J. Math. Phys. 35, no. 3, pp.1066–1094 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  38. Marušić-Paloka, E., Piatnitski, A.: Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc. (2) 72, no. 2, 391–409 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  39. Morgan, R., Babuska, I.: An approach for constructing families of equations for periodic media. I and II, SIAM J. Math. Anal. 22, pp.1–15, pp.16–33, (1991).

    Google Scholar 

  40. Murat, F., Tartar, L.: H-convergence, Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger, mimeographed notes (1978). English translation in Topics in the mathematical modelling of composite materials, A. Cherkaev, R. Kohn, Editors, Progress in Nonlinear Differential Equations and their Applications, 31, Birkhaüser, Boston (1997).

    Google Scholar 

  41. Myers, H.P.: Introductory solid state physics, Taylor & Francis, London (1990).

    Google Scholar 

  42. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20(3), pp.608–623 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  43. Odeh, F., Keller, J.: Partial differential equations with periodic coefficients and Bloch waves in crystals, J. Math. Phys. 5, 11, pp.1499–1504 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  44. Panati, G., Sohn, H., Teufel, S.: Effective dynamics for Bloch electrons: Peierls substitution and beyond, Comm. Math. Phys. 242, pp.547–578 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  45. Pedersen, F.: Simple derivation of the effective-mass equation using a multiple-scale technique, Eur. J. Phys., 18, pp.43–45 (1997).

    Article  Google Scholar 

  46. Poupaud, F., Ringhofer, C.: Semi-classical limits in a crystal with exterior potentials and effective mass theorems, Comm. Partial Differential Equations, 21, no. 11–12, pp.1897–1918 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  47. Quéré, Y.: Physics of materials, Taylor & Francis (1998).

    Google Scholar 

  48. Reed, M., Simon, B.: Methods of modern mathematical physics, Academic Press, New York (1978).

    MATH  Google Scholar 

  49. Sanchez-Palencia, E.: Non homogeneous media and vibration theory, Lecture notes in physics 127, Springer Verlag (1980).

    Google Scholar 

  50. Sevost’janova, E.V.: An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients, Math. USSR Sbornik, 43, pp.181–198 (1982).

    Article  Google Scholar 

  51. Spagnolo, S.: Sulla convergenza di soluzioni di equazione paraboliche ed ellitiche, Ann. Sc. Norm. Sup. Pisa 22, pp.577–597 (1968).

    Google Scholar 

  52. Spagnolo, S.: Convergence in energy for elliptic operators, Numerical solutions of partial differential equations III Synspade 1975, B. Hubbard ed., Academic Press New York (1976).

    Google Scholar 

  53. Sparber, Ch.: Effective mass theorems for nonlinear Schrödinger equations, SIAM J. Appl. Math. 66, no. 3, pp.820–842 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  54. Tartar, L.: Quelques remarques sur l’homogénéisation, Proc. of the Japan-France Seminar 1976 “Functional Analysis and Numerical Analysis”, Japan Society for the Promotion of Sciences pp.469–482 (1978).

    Google Scholar 

  55. Tartar, L.: An introduction to the homogenization method in optimal design, in Optimal shape design (Tróia, 1998), A. Cellina and A. Ornelas eds., Lecture Notes in Mathematics 1740, pp.47–156, Springer, Berlin (2000).

    Google Scholar 

  56. Wilcox, C.: Theory of Bloch waves, J. Anal. Math. 33, pp.146–167 (1978).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allaire, G. (2008). Periodic Homogenization and Effective Mass Theorems for the Schrödinger Equation. In: Abdallah, N.B., Frosali, G. (eds) Quantum Transport. Lecture Notes in Mathematics, vol 1946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79574-2_1

Download citation

Publish with us

Policies and ethics