Skip to main content

Self Amplified Spontaneous Emission

  • Chapter
  • First Online:
Book cover Ultraviolet and Soft X-Ray Free-Electron Lasers

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 229))

  • 1607 Accesses

Abstract

For wavelengths in the ultraviolet and X-ray regime the start-up of the FEL process by seed radiation is not readily done due to the lack of suitable lasers. Seeding by a high harmonic of an optical laser is a widely discussed idea. The process of Self-Amplified Spontaneous Emission SASE permits the startup of lasing at an arbitrary wavelength, without the need of external radiation. The SASE mechanism was proposed and theoretically explored in the early 1980s [1, 2, 3, 4] but it took 20 years before it could be verified experimentally at visible and ultraviolet wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kondratenko, A.M., Saldin, E.L.: Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accel. 10, 207 (1980)

    Google Scholar 

  2. Bonifacio, R., Pellegrini, C., Narducci, L.M.: Collective Instabilities and High-Gain Regime in a free electron laser. Opt. Comm. 50, 373 (1984)

    Article  ADS  Google Scholar 

  3. Kim, K.-J.: Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 1871 (1986)

    Article  ADS  Google Scholar 

  4. Kim, K.-J.: An analysis of self-amplified spontaneous emission. Nucl. Instr. Meth. A 250, 396 (1986)

    ADS  Google Scholar 

  5. Huang, Z., Kim, K.-J: Review of x-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007)

    Article  ADS  Google Scholar 

  6. Hogan, M. et al.: Measurements of high gain and intensity fluctuations in a SASE free-electron laser. Phys. Rev. Lett. 80, 289 (1998)

    Article  ADS  Google Scholar 

  7. Hogan, M., et al.: Measurements of gain larger than 105 at 12 μm in a selfamplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 81, 4867 (1998)

    Article  ADS  Google Scholar 

  8. Milton, S.V., et al.: Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292, 2037.2041 (2001)

    Article  ADS  Google Scholar 

  9. Lumpkin, A.H., et al.: Evidence for microbunching sidebands in a saturated free-electron laser using coherent optical transition radiation. Phys. Rev. Lett. 88, 234801 (2002)

    Article  ADS  Google Scholar 

  10. Andruszkow, J., et al.: First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85, 3825 (2000)

    Article  ADS  Google Scholar 

  11. Ayzazyan, V., et al.: Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002)

    Article  ADS  Google Scholar 

  12. Ayzazyan, V., et al.: A new powerful source for VUV radiation: Demonstration of exponential growth and saturation at the TTF free-electron laser. Eur. Phys. J. D 20, 149 (2002)

    Article  ADS  Google Scholar 

  13. FLASH Collaboration, Ackermann, W., et al.: Operation of a free-electron laser from the extreme ultraviolet to the water window, Nature Photonics, June 2007

    Google Scholar 

  14. Ayzazyan, V., et al.: First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297 (2006)

    Article  ADS  Google Scholar 

  15. Geloni, G., Saldin, E.L., Schneidmiller, E.L., Yurkov, M.V.: Exact solution for second harmonic generation in XFELs. Opt. Commun. 271, 207 (2007)

    Article  ADS  Google Scholar 

  16. Tremaine, A., et al.: Experimental characterization of nonlinear harmonic radiation from a visible self-amplified spontaneous emission free-electron laser at saturation. Phys. Rev. Lett. 88, 204801 (2002)

    Article  ADS  Google Scholar 

  17. DiMauro, L., et al.: First SASE and seeded FEL lasing of the NSLS DUV FEL at 266 and 400 nm. Nucl. Instr. Meth. A 507, 15 (2003)

    ADS  Google Scholar 

  18. Shintake, T.: Status of Japanese XFEL project and SSCS test accelerator, invited paper, FEL Conference, Berlin (2006)

    Google Scholar 

  19. Murokh, A., et al.: Properties of the ultrashort gain length, self-amplified spontaneous emission free-electron laser in the linear regime and saturation. Phys. Rev. E 67, 066501 (2003)

    Article  ADS  Google Scholar 

  20. Tremaine, A., et al.: Fundamental and harmonic microbunching in a high-gain self-amplified spontaneous-emission free-electron laser. Phys. Rev. E 66, 036503 (2002)

    Article  ADS  Google Scholar 

  21. Ischebeck, R.: Transverse coherence of a VUV free electron laser. Ph. D. Thesis, University of Hamburg 2003, DESY-Thesis

    Google Scholar 

  22. Ischebeck, R., et al.: Study of the transverse coherence at the TTF free electron laser. Nucl. Instr. Meth. A 507, 175 (2003)

    Article  ADS  Google Scholar 

Further Reading

  1. Lefevre, T., et al.: Self-amplified spontaneous emission and bunching at 3 GHz in a microwave free-electron laser. Phys. Rev. Lett. 82, 323 (1999)

    Article  ADS  Google Scholar 

  2. Prazeres, R., et al.: Observation of self-amplified spontaneous emission in the mid-infrared in a free-electron laser. Phys. Rev. Lett. 78, 2124 (1997)

    Article  ADS  Google Scholar 

  3. Nguyen, D.C., et al.: First lasing of the regenerative amplifier FEL. Nucl. Instr. Meth. A 429, 125 (1999)

    Article  ADS  Google Scholar 

  4. Babzien, M., et al.: Observation of self-amplified spontaneous emission in the near-infrared and visible wavelengths. Phys. Rev. E 57, 6093 (1998)

    Article  ADS  Google Scholar 

  5. Saldin, E.L., Schneidmiller, E.L., Yurkov, M.V.: Statistical properties of the radiation from a SASE FEL operating in the linear regime. Nucl. Instr. Meth. A 407, 291 (1998)

    Google Scholar 

  6. Bonifacio, R., et al.: Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett. 73, 70 (1994)

    Article  ADS  Google Scholar 

  7. Saldin, E.L., Schneidmiller, E.L., Yurkov, M.V.: Numerical simulations of the UCLA/LANL/RRCKI/SLAC experiment on a high-gain SASE FEL. Nucl. Instr. Meth. A 429, 197 (1999)

    ADS  Google Scholar 

  8. Yu, L.-H., et al.: First lasing of a high-gain harmonic generation free-electron laser experiment. Nucl. Instr. Meth. A 445, 301 (2000)

    ADS  Google Scholar 

  9. Huang, Z., Kim, K.-J.: Transverse and temporal characteristics of a highgain free-electron laser in the saturation regime. Nucl. Instr. Meth. A 483, 504 (2002)

    ADS  Google Scholar 

  10. Richter, M., et al.: Measurement of gigawatt radiation pulses from a vacuum and extreme ultraviolet free-electron laser. Appl. Phys. Lett. 2970 (2003)

    Google Scholar 

  11. Krinsky, S., Huang, Z.: Frequency-chirped self-amplified spontaneous emission free-electron lasers. Phys. Rev. ST Accel. Beams 6, 050702 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schmüser .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmüser, P., Dohlus, M., Dohlus, J. (2008). Self Amplified Spontaneous Emission. In: Ultraviolet and Soft X-Ray Free-Electron Lasers. Springer Tracts in Modern Physics, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79572-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79572-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79571-1

  • Online ISBN: 978-3-540-79572-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics