Advertisement

The Brief Elementary Basics of Antenna Arrays

  • Igor V. Minin
  • Oleg V. Minin
Chapter
Part of the Lecture Notes Electrical Engineering book series (LNEE, volume 19)

Keywords

Radiation Pattern Antenna Array Fresnel Zone Zone Plate Reference Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. K. Moernaut, D. Orban. The Basics of Antenna Arrays: http://www.orbanmicrowave.com/The_Basics_Of_Patch_Antennas.pdf.Google Scholar
  2. 2.
    C. B. Dietrich. Adaptive Arrays and Diversity Antenna Configurations for Handheld Wireless Communication Terminals, Chapter 3: Antenna Arrays and Beamforming, PhD Thesis, Blacksburg, Virginia, 2000, available at: http://scholar.lib.vt.edu/theses/available/etd-04262000–15330030/unrestricted.Google Scholar
  3. 3.
    W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, New York, 1981.Google Scholar
  4. 4.
    A. Ishide, R. T. Compton Jr., On Grating Nulls in Adaptive Arrays. IEEE Transactions on Antennas and Propagation, Vol. AP-28, No. 4, July 1980 pp. 467–475.Google Scholar
  5. 5.
    J. Fuhl, D. J. Cichon, E. Bonek. Optimum Antenna Topologies and Adaptation Strategies for SDMA. IEEE GLOBECOM 96. Vol. 1, 1996, pp. 575–580.Google Scholar
  6. 6.
    K. Dietze, C. Dietrich, W. Stutzman. Vector Multipath Propagation Simulator (VMPS), Draft Report, Virginia Tech Antenna Group, April 7, 1999.Google Scholar
  7. 7.
    E. Brookner (Ed.). Practical Phased Array Antenna Systems. Artech House, Boston, MA, 1991.Google Scholar
  8. 8.
    R. J. Mailloux. Phased Array Antenna Handbook. Artech House, Boston, MA, 1994.Google Scholar
  9. 9.
    A. Fresnel. Calcul de l’Intensite de la Lumiere au Centre de l’Ombre d’un Ecran et d’une Ouverture Circulaires Eclairee par une Point Radieux. Oeuvres d’Augustin Fresnel, Vol. 1, Note 1, pp. 365–372 (1866). Reprinted in J. Ojeda-Castanada and C. Gomez-Reino, Selected Papers on Zone Plates, SPIE Milestone Series Vol. MS 128 (1996).Google Scholar
  10. 10.
    R. Guenther. Modern Optics. John Wiley & Sons Inc., New York, 1990.Google Scholar
  11. 11.
    H. D. Hristov. Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas. Artech House Inc., Boston, MA, 2000.Google Scholar
  12. 12.
    O. V. Minin, I. V. Minin. Diffraction Optics of Millimetre Waves, Institute of Physics Publishing, Bristol, UK, 2004.Google Scholar
  13. 13.
    Y. J. Guo, S.K. Barton. Fresnel Zone Antennas, Kluwer Academic Publishers, Boston, 2002.Google Scholar
  14. 14.
    J. C. Wiltse. History and Evolution of Fresnel Zone Plate Antennas for Microwaves and Millimeter Waves. IEEE Antennas and Propagation Int, Symp. 1999, Special Section, Status and Future of Fresnel Zone Plate Antennas. Orlando FL, July 11–16, 1999, Symposium Digest Vol. 2, pp. 722–725.Google Scholar
  15. 15.
    F. Sobel, F. L. Wentworth, J. C., Wiltse. Quasi-Optical Surface Waveguide and Other Components for the 100- to 300-Gc Region. IRE Transactions on Microwave Theory and Techniques, pp.512–518, November 1961.Google Scholar
  16. 16.
    D. N. Black, J. C. Wiltse. Millimeter-Wave Characteristics of Phase-Correcting Fresnel Zone Plates. IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 12, pp. 1122–1129, December 1987.Google Scholar
  17. 17.
    J. E. Garrett, J. C. Wiltse. Antenna Pattern Characteristics of Phase-Correcting Fresnel Zone Plates. IEEE Antennas and Propagation Symposium 1990, pp.1906–1909.Google Scholar
  18. 18.
    C. A. Barrett, J. C. Wiltse. Design Parameters for Zone Plate Antennas. IEEE Antennas and Propagation Symposium, 1992, pp.608–611.Google Scholar
  19. 19.
    A. Petosa, A. Ittipiboon. Fresnel Lens Antenna for Microwave Communication Applications. CRC Report No. 2004–003, Ottawa, Nov. 2004.Google Scholar
  20. 20.
    J. C. Wiltse. Recent Developments in Fresnel Zone Plate Antennas at Microwave/Millimeter Wave. SPIE Conference, pp.146–154, July 1998.Google Scholar
  21. 21.
    A. Petosa, A. Ittipiboon. Shadow Blockage Effects on the Aperture Efficiency of Dielectric Fresnel Lenses. IEE Proceedings Microwave Antennas and Propagation, Vol. 147, No. 6, pp. 451–454, December 2000.Google Scholar
  22. 22.
    I. V. Minin, O. V. Minin, Reduction of the Zone Shadowing Effect in Diffractive Optical Elements on Curvilinear Surfaces. Optoelectronics, Instrumentation and Data Processing, Vol. 40, No. 3, pp. 117–127, 2004.MathSciNetGoogle Scholar
  23. 23.
    I. V. Minin, O. V. Minin, Diffractive quasioptics. – SibAgs Publisher, 1999, 308p. (in Russian).Google Scholar
  24. 24.
    A. Petosa, N. Gagnon, A. Ittipiboon. Effects of Fresnel Lens Thickness on Aperture Efficiency. ANTEM 2004, Ottawa Canada, pp. 175–178, July 20–23 2004.Google Scholar
  25. 25.
    A. Petosa, N. Gagnon, A. Ittipiboon. Optimization of Dielectric Fresnel Lens Thickness for Maximizing Gain. Submitted to ANTEM 2006, Montreal Canada.Google Scholar
  26. 26.
    D. R. Reid, G. S. Smith. A Full Electromagnetic Analysis of Grooved-Dielectric Fresnel Zone Plate Antennas for Microwave and Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, August 2007, pp. 2138–2146.Google Scholar
  27. 27.
    S. M. StoutGrandy, A. Petosa, I. V. Minin, O. V. Minin, J. S. Wight. Novel Reflector Backed Fresnel Zone Plate Antenna. Microwave and Optical Technology Letters Vol. 49, No. 12, December 2007, pp. 3096–3098.Google Scholar
  28. 28.
    S. Stout-Grandy, A. Petosa, I.V. Minin, O.V. Minim, J.S. Wight, “Investigation of Low-Profile Fresnel Zone Plate Antennas”, URSI North American Radio Science Meeting, Ottawa Ontario, July 23, 2007.Google Scholar
  29. 29.
    R. Merlin. Radiationless Electromagnetic Interference: Evanescent-Field Lenses and Perfect Focusing. Science, Vol. 317, August 2007, pp. 927–929.Google Scholar
  30. 30.
    A. Petosa, A. Ittipoon. A Fresnel Lens Designed Using a Perforated Dielectric. ANTEM 2002, St-Hubert, Quebec, Canada, pp. 399–402, July 31-August 2, 2002.Google Scholar
  31. 31.
    A. Petosa, A. Ittipoon. Design and Performance of a Perforated Dielectric Fresnel Lens. IEE Proceedings Microwave Antennas Propagation, Vol. 150, No. 5, October 2003, pp. 309–314.Google Scholar
  32. 32.
    M. J. Vaughan, K. Y. Hur, R. C. Compton. Improvement of Microstrip Patch Antenna Radiation Patterns. IEEE Transactions on Antennas and Propagation, Vol. 42, No. 6, June 1994, pp. 882–885.Google Scholar
  33. 33.
    G. O. Gauthier, A. Courtay, G. M. Rebeiz. Microstrip Antennas on Synthesized Low Dielectric-Constant Substrates. IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, August 1997, pp. 1310–1314.Google Scholar
  34. 34.
    J. B. Muldavin, G. M. Rebeiz. Millimeter-Wave Tapered-Slot Antennas on Synthesized Low Permittivity Substrates. IEEE Transactions on Antennas and Propagation, Vol. 47, No. 8, August 1999, pp. 1276–1280.Google Scholar
  35. 35.
    J. S. Colburn, Y. Rahmat-Samii. Patch Antennas on Externally Perforated High Dielectric Constant Substrates. IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, December 1999, pp. 1785–1794.Google Scholar
  36. 36.
    P. F. Goldsmith. Perforated Plate Lens for Millimeter Quasi-Optical Systems. IEEE Transactions on Antennas and Propagation, Vol. 39, No. 6, June 1991, pp. 834–838.Google Scholar
  37. 37.
    A. Petosa, A. Ittipoon. A Fresnel Lens Designed Using a Perforated Dielectric. ANTEM 2002, St-Hubert, Quebec, Canada, pp. 399–402, July August 2, 2002.Google Scholar
  38. 38.
    A. Petosa, A. Ittipoon. Design and Performance of a Perforated Dielectric Fresnel Lens. IEE Proceedings Microwave Antennas Propagation, Vol. 150, No. 5, October 2003, pp. 309–314.Google Scholar
  39. 39.
    I. Kadri, M. Britton, L. Roy. A Multi Frequency Fresnel Lens Using a Perforated Dielectric. IEEE CCEC-CCGEI 2004, Niagara Falls, pp. 913–916, May 2004.Google Scholar
  40. 40.
    Y. J. Guo, S. K. Barton. Fresnel Zone Plate Reflector Incorporating Rings. IEEE Microwave and Guided Wave Letters, Vol. 3, No. 11, November 1993, pp. 417–419.Google Scholar
  41. 41.
    Y. J. Guo, S. K. Barton. Phase Correcting Zonal Reflector Incorporating Rings. IEEE Transactions on Antennas and Propagation, Vol. 43, No. 4, April 1995, pp. 350–355.Google Scholar
  42. 42.
    B. D. Nguyen, C. Migliaccio, C. Pichot. 94 GHz zonal ring reflector for helicopter collision avoidance. Electronics Letters, Vol. 40, No. 20, September, 2004.Google Scholar
  43. 43.
    B. D. Nguyen, C. Migliaccio, Ch. Pichot, K. Yamamoto, N. Yonemoto. W-Band Fresnel Zone Plate Reflector for Helicopter Collision Avoidance Radar. IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, May 2007, pp. 1452–1456.Google Scholar
  44. 44.
    M. S. Mirotznik, D. W. Prather, J. N. Mait et al. Three-Dimensional Analysis of subwavelength Diffractive Optical Elements with the Finite-Difference Time-Domain Method. Applied Optics Vol. 39, 2000, pp. 2871–2880.CrossRefGoogle Scholar
  45. 45.
    D. Feng, Y. Yan, G. Jin, S. Fan. Beam Focusing Characteristics of Diffractive Lenses with Binary Subwavelength Structures. Optics Communications Vol. 239, 2004, pp. 345–352.CrossRefGoogle Scholar
  46. 46.
    M. Born, E. Wolf. Principles of Optics, 7th ed., Cambridge University Press, 1999.Google Scholar
  47. 47.
    H. A. Mcleod, Thin Film Optical Filters, 2nd ed., Mcgraw Hill, New York, 1989.Google Scholar
  48. 48.
    P. Yeh. Electromagnetic Propagation in Birefringent Layered Media. Journal of the Optical Society of America, Vol. 69, 1979, pp. 742–756.MathSciNetCrossRefGoogle Scholar
  49. 49.
    M. S. Mirotznik, D. M. Pustai, D. W. Prather, J. N. Mait. Design of Two-Dimensional Polarization-Selective Diffractive Optical Elements With Form-Birefringent Microstructures, Applied Optics Vol. 43, 2004, pp. 5947–5954.CrossRefGoogle Scholar
  50. 50.
    M. S. Mirotznik, T. Creazzo, S. Mathews. Design of Diffractive Elements at Millimeter Wavelengths Using Subwavelength Cylindrical Microstructures. Microwave and Optical Technology Letters, Vol. 49, No. 8, August 2007, pp. 1880–1884.Google Scholar
  51. 51.
    J. D. Joannopoulos, R. D. Meade, J. N. Winn. Photonic Crystals: Molding the Flow of Light. Princeton Univ. Press, Princeton, New Jersey, 1995.zbMATHGoogle Scholar
  52. 52.
    K. Sakoda. Optical Properties of Photonic Crystals. 2nd ed. Springer-Verlag, New York, 2005.Google Scholar
  53. 53.
    B. Goss Levi. Progress Made in Near-field Imaging with Light from a Sharp Tip. Physics Today Vol. 52, 1999, 9. 18.CrossRefGoogle Scholar
  54. 54.
    E. Flück, N. F. van Hulst, W. L. Vos, L. Kuipers. Near-field Optical Investigation of Three-Dimensional Photonic Crystals. Physical Review E Vol. 68, 2003, p. 015601.CrossRefGoogle Scholar
  55. 55.
    G. D. Maluzhinetz, Diffraction Near the Optical Axis of a Zone Plate. Doklady AN SSSR. Vol. 54, No 5. 1946, pp. 403–406.Google Scholar
  56. 56.
    J. L. Soret. Ueber die durch Kreisgitter erzeugten Diffractionsphanomene. Annalen der Physic und Chemie, Vol. 156, 1875, pp. 99–113. Reprinted in J. Ojeda-Castanada and C. Gomez-Reino, ibid.Google Scholar
  57. 57.
    L. Rayleigh, Reprinted in Lord Rayleigh Scientific Papers, Vol. 3, 1887–1892, pp. 74–79. R. W. Wood. Phase Reversal Zone Plates and Diffraction Telescope. Phil. Mag. Series 5, Vol. 45, 1898, pp. 511.Google Scholar
  58. 58.
    I. V. Minin and O. V. Minin. Fesnel Zone Plate Lens and Antennas for Millimeter Waves: History and Evolutions of Developments and Applications. Proceedings of the 25th Int. Conference on Infrared and Millimeter Waves, September 12–15, 2000, Beijing, China, pp. 409–410.Google Scholar
  59. 59.
    A. Engel, J. Steffen, G. Herziger. Laser machining with modulated zone plates. Applied Optics Vol. 13, No 12, 1947, pp. 269–273.Google Scholar
  60. 60.
    A. Fedotowsky, K. Lehovec, Far Field Diffraction Patterns of Circular Gratings. Applied Optics, Vol. 13, No 11. 1947, pp. 2638–2642.Google Scholar
  61. 61.
    A. Fedotowsky, K. Lehovec, Optimal Filter Design for Annular Imaging. Applied Optics Vol. 13, No 12. 1947, pp. 2919–2923.Google Scholar
  62. 62.
    V. P. Koronkevich, I. G. Palchikova, A. G. Poleschuk, Yu. I. Yurlov, Kinoform Optical Elements with Annular Momentum Response: Preprint No 256 IAiE SO AN SSSR. Novosibirsk, 1985. p. 19.Google Scholar
  63. 63.
    N. L. Kazansky. Numerical Experimental Study of Diffraction Characteristics of a Focusator Onto A Ring. Kompyuternaya optika, No 10–11, 1992, pp. 128–144.Google Scholar
  64. 64.
    M. A. Golub, N. L. Kazansky, I. N. Sisakyan, V. A. Soifer. Numerical Experiment with Flat Optics Elements. Avtometria No 1. 1998, pp. 70–82.Google Scholar
  65. 65.
    I. V. Minin, O. V. Minin, Control of Focusing Properties of Diffractive Elements. Kvantovaya elektronika Vol. 17, No 2. 1990, pp. 249–251.Google Scholar
  66. 66.
    Inventor’s Certificate (USSR) No 1617398, G 02 B 27/42, I. V. Minin, O. V. Minin, Zone plate, 1988.Google Scholar
  67. 67.
    I. V. Minin, O. V. Minin, G. W. Webb. “Flat and Conformal Zone Plate Antennas with New Capabilities. Proc. of the International Conference on Applied Electromagnetics and Communications – ICECOM 2005, Dubrovnik, Croatia, October 11–14, pp. 405–408.Google Scholar
  68. 68.
    E. A. Dolmatova, Semiconductor Fresnel Zone Plate. Vestn. Har’kovskogo Universiteta. No. 7, 163. 1978, pp. 71–72 (in Russian).Google Scholar
  69. 69.
    G. W. Webb, S. C. Rose, M. S. Sanchez, J. M. Osterwalder. Experiments on an Optically Controlled 2-D Scanning Antenna. Proc. 1998 Antenna Applications Symposium, Allerton Park, Monticello, IL, September 16–18, 1998 (http://www.ecs.umass.edu/ece/allerton/papers1998/).Google Scholar
  70. 70.
    M. Hajian, G. A. de Vree, L. P. Ligthatin. Electromagnetic Analysis of Beam-Scanning Antenna at Millimeter-Wave Band Based on Photoconductivity Using Fresnel-Zone-Plate Technique. IEEE Antennas and Propagation Magazine. Vol. 45, No. 5, October 2003, pp. 13–25.Google Scholar
  71. 71.
    C.-C. Cheng, A. Abbaspour-Tamijani. Study of 2-bit Antenna-Filter-Antenna Elements for Reconfigurable Millimeter-Wave Lens Arrays. IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 12, December 2006, pp. 4498–4506.Google Scholar
  72. 72.
    G. W. Webb, W. Vernon, M. S. Sanchez, S. C. Rose, S. Angello. Optically Controlled Millimeter Wave Antenna. Proceedings International Topical Meeting on Microwave Photonics, Melbourne, Australia, November 17–19, 1999, p. 275.Google Scholar
  73. 73.
    G. W. Webb, W. Vernon, M. S. Sanchez, S. C. Rose, S. Angello. Novel Photonically Controlled Antenna for MMW Communications. Proceedings International Topical Meeting on Microwave Photonics, Melbourne, Australia, 2000, p. 176.Google Scholar
  74. 74.
    G. W. Webb and L. H. Pinck. Light-Controlled MMW Beam Scanner. Proc. 1993 SBMO International Microwave Conference, Vol. II, Sao Paolo, Brazil, IEEE Cat. No. 93TH0555-3, p. 417.Google Scholar
  75. 75.
    G. W. Webb, L. H. Pinck. MMW Beam Scanner Controlled by Light. Proc. Workshop on Millimeter-Wave Power Generation and Beam Control, Huntsville, AL, Special Report RD-AS-94-4, U.S. Army Missile Command, p. 333.Google Scholar
  76. 76.
    A. R. Rosen, P. J. Stabile, R. Amantea, W. J. Janton, D. B. Gilbert, J. K. Butler. Active Millimeter Wave Antenna Array Steered by Optically Induced Gratings. Proc. Workshop on Millimeter-Wave Power Generation and Beam Control, Huntsville, AL, Special Report RD-AS-94-4, U.S. Army Missile Command, p. 341.Google Scholar
  77. 77.
    A. Tateishi, K. Kikuchi. Application of Fresnel Zone Plate to Millimeter Wave Modulator. Microwave and Millimeter Wave Technology Proceedings, 1998. ICMMT ‘98. 1998 International Conference on, 19.Google Scholar
  78. 78.
    M. Hajian, W. Keizer, B. J. Reits, L.P. Ligthart. Concept of a Scanning Beam Antenna at 35 GHz based on Photoconductivity Technology. Proc. of the 20th ESTEC Antenna Workshop, 18–20 June 1997, The Netherlands, pp. 55–65.Google Scholar
  79. 79.
    G. S. Smith. Directive Properties of Antennas for Transmission into a Material Half-Space. IEEE Transaction on Antennas Propagation, Vol. AP-32, March 1984 pp. 232–246.Google Scholar
  80. 80.
    C. A. Balanis. Antenna theory, analysis and design. 2nd ed. John Wiely & Sons, New York, 1996, (sub Section 12.5.3).Google Scholar
  81. 81.
    M. Hajian, G. A. de Vree, L. P. Ligthati. Electromagnetic Analysis of Beam-Scanning Antenna at Millimeter-Wave Band Based on Photoconductivity Using Fresnel-Zone-Plate Technique // IEEE Antennas and Propagation Magazine. Vol. 45, No. 5, October 2003, pp.13–25.Google Scholar
  82. 82.
    V. I. Karpenko, O. V. Karpenko. Princoples of Designing of Optocontrolled Antennas for Wideband Radiolocation System. Proc. 2nd Int. Workshop on Ultrawideband and Ultrashort Impulse Signals, September 19–22, Sevastopol, Ukraine, 2004, pp. 59–60.Google Scholar
  83. 83.
    M. Tanaka, S. Sato. Millimeter-Wave Detection Properties of Liquid Crystal Prism Cells with Stack-Layered Structure. Japan Journal of Applied Physics Vol. 40, 2001, pp. 4131.CrossRefGoogle Scholar
  84. 84.
    J/ Gutiérrez Ríos, J. Vassal’lo Sanz. New Fresnel Reflector Technology with Reconfigurable Beam Pattern. Proc. of the 29th ESA Antenna Workshop on Multiple Beams and Reconfigurable Antennas, Noordwijk, The Netherlands, 18–20 April 2007.Google Scholar
  85. 85.
    A. Petosa, S. Thirakoune, A. Ittipiboon. Reconfigurable Fresnel-Zone-Plate-Shutter Antenna with Beam-Steering Capability. IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, October 2007, pp. 42–51.Google Scholar
  86. 86.
    K. Hirokazu, K. Takao, F. Hideo, N. Toshihiro. Millimeter-wave Beam Former Using Liquid Crystal. IEICE Technical Report. Microwaves, Vol. 103, No. 534, 2003, pp. 71–76.Google Scholar
  87. 87.
    C. C. Cheng, A. Abbaspour-Tamijani, C. Bircher. Millimeterwave Beam-Steering Using an Array of Reconfigurable Antenna–Filter–Antenna Elements.in IEEE MTT-S International Microwave Symposium Digit. 2006, pp. 449–452.Google Scholar
  88. 88.
    F. Guerin, J. M. Chappe, P. Joffre, D. Dolfi. Modeling, Synthesis and Characterization of Millimeter Wave Multilayer Microstrip Liquid Crystal Shifter. Japan Journal of Applied Physics Vol. 36, 1997, p. 4409.CrossRefGoogle Scholar
  89. 89.
    T. Kuki, H. Fujikake, T. Nomoto, Y. Utsumi: Trans. IEICE Electron. J84-C (2001) 90 [in Japanese].Google Scholar
  90. 90.
    M. Tanaka, S. Sato. Electrically Controlled Millimeter-Wave Focusing Properties of Liquid Crystal Lens. Japan Journal of Applied Physics, Vol. 41, 2002, pp. 5332–5333.CrossRefGoogle Scholar
  91. 91.
    M. Tanaka, S. Sato. Millimeter-Wave Propagation Properties of the Nematic Liquid Crystal Cell with a 1-D Periodic Structure Induced by Different Molecular Orientations. Molecular Crystals and Liquid Crystals, Vol. 434, 2005, pp. 107–112.CrossRefGoogle Scholar
  92. 92.
    R. -P. Pan, T. -R. Tsai, C. Wang, C. -Y. Chen, C. -L. Pan, The Refractive Indices of Nematic Liquid Crystal 4, 4-n-pentylcyanobiphenyl in the THz Frequency Range, Molecular Crystaland Liquid Crystal., Vol. 409, 2004, pp. 137–144.CrossRefGoogle Scholar
  93. 93.
    T. -R. Tsai, C. -Y. Chen, C. -L. Pan, R. -P. Pan, X. -C. Zhang, Room Temperature Electrically Controlled Terahertz Phase Shifter, IEEE Microwave and Wireless Components Lett., Vol. 14, No. 2, February 2004 pp. 77–79.Google Scholar
  94. 94.
    C. -Y. Chen, T. -R. Tsai, C. -L. Pan, R. -P. Pan. Terahertz Phase Shifter with Nematic Liquid Crystal in a Magnetic Field, Applied Physics Letters Vol. 83, No. 22, December 2003, pp. 4497–4499.Google Scholar
  95. 95.
    C. -L. Pan, R.-P. Pan. Liquid-Crystal-Based Devices Manipulate Terahertz-Frequency Radiation. SPIE Newsroom, 10.1117/2.1200702.0676.Google Scholar
  96. 96.
    C. -L. Pan, R. -P. Pan. Recent Progress in Liquid Crystal THz Optics, Proc. SPIE 6135, pp. D1–13, 2006.Google Scholar
  97. 97.
    J. Ojeda-Castanada and C. Gomez-Reino, Selected Papers on Zone Plates, SPIE Milestone Series Vol. MS 128 (1996).Google Scholar
  98. 98.
    C. C. Cheng, A. Abbaspour-Tamijani. Study of 2-bit Antenna–Filter–Antenna Elements for Reconfigurable Millimeter-Wave Lens Arrays. IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 12, December 2006, pp. 4498–4506.Google Scholar
  99. 99.
    I. V. Minin, O. V. Minin, Y. R. Triandaphilov, V. V. Kotlyar. Subwavelength Diffractive Photonic Crystal Lens. Progress in Electromagnetic Research B (PIER B) Vol. 7, 2008, pp. 257–264.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Igor V. Minin
    • 1
  • Oleg V. Minin
    • 1
  1. 1.Dept. Information ProtectionNovosibirsk State Technical UniversityNovosibirskRussia 630092

Personalised recommendations