Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 116))

  • 586 Accesses

In recent years, with the advent of fine lithographical methods [1], molecular beam epitaxy [2], organometallic vapor-phase epitaxy [3], and other experimental techniques, the restriction of the motion of the carriers of bulk materials in one (ultrathin films, quantum wells, nipi structures, inversion layers, accumulation layers), two (quantum wires), and three (quantum dots, magnetosize quantized systems, magneto inversion layers, magneto accumulation layers, quantum dot superlattices, magneto quantum well superlattices and magneto NIPI structures) dimensions has in the last few years, attracted much attention not only for its potential in uncovering new phenomena in nanoscience but also for its interesting quantum device applications [4–6]. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film (say, the z direction) may be viewed as carrier confinement in an infinitely deep 1D rectangular potential well, leading to quantization [known as quantum size effect (QSE)] of the wave vector of the carrier along the direction of the potential well, allowing 2D carrier transport parallel to the surface of the film representing new physical features not exhibited in bulk semiconductors [7]. The low-dimensional heterostructures based on various materials are widely investigated because of the enhancement of carrier mobility [8]. These properties make such structures suitable for applications in quantum well lasers [9], heterojunction FETs [10], high-speed digital networks [11], high-frequency microwave circuits [12], optical modulators [13], optical switching systems [14], and other devices. The constant energy 3D wave-vector space of bulk semiconductors becomes 2D wave-vector surface in ultrathin films or quantum wells due to dimensional quantization. Thus, the concept of reduction of symmetry of the wave-vector space and its consequence can unlock the physics of low dimensional structures.

In Sect. 5.2.1 of this chapter, the expressions for the surface electron concentration per unit area and the 2D DMR for ultrathin films of tetragonal materials have been formulated on the basis of the generalized dispersion relation, as given by (2.2). In Sect. 5.2.2, it has been shown that the corresponding results of the 2D DMR in ultrathin films of III–V, ternary and quaternary compounds form special cases of our generalized analysis as given in Sect. 5.2.1. In Sect. 5.2.3, we have studied the same for ultrathin films of II–VI semiconductors. In Sect. 5.2.4, the 2D DMR has been derived for ultra-thin films of bismuth in accordance with the McClure and Choi, the Cohen, the Lax nonparabolic ellipsoidal, and the parabolic ellipsoidal models respectively. In Sects. 5.2.5 and 5.2.6, the formulations of the 2D DMR in ultrathin films of IV–VI and stressed Kane type materials has been presented. The last Sect. 5.2.7 contains the result and discussions for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.M. Petroff, A.C. Gossard, W. Wiegmann, Appl. Phys. Letts. 45, 620 (1984); J.M. Gaines, P.M. Petroff, H. Kroemar, R.J. Simes, R.S. Geels, J.H. English, J. Va c . S c i . Te ch . B6, 1378 (1988)

    Article  ADS  Google Scholar 

  2. J. Cilbert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 1275 (1986)

    Article  ADS  Google Scholar 

  3. T. Fujui, H. Saito, Appl. Phys. Lett. 50, 824 (1987)

    Article  ADS  Google Scholar 

  4. H. Sasaki, Jpn J. Appl. Phys. 19, 94 (1980)

    Google Scholar 

  5. P.M. Petroff, A.C. Gossard, R.A. Logan, W. Weigmann, Appl. Phys. Lett. 41 635 (1982)

    Article  ADS  Google Scholar 

  6. H. Temkin, G.J. Dolan, M.B. Panish, S.N.G. Chu, Appl. Phys. Lett. 50, 413 (1988); I. Miller, A. Miller, A. Shahar, U. Koren, P.J. Corvini, Appl. Phys. Lett. 54, 188 (1989)

    Article  ADS  Google Scholar 

  7. L.L. Chang, H. Esaki, C.A. Chang, L. Esaki, Phys. Rev. Lett. 38, 1489 (1977); K. Less, M.S. Shur, J.J. Drunnond, H. Morkoc, IEEE Trans. Electron Dev. ED-30, 07 (1983); G. Bastard, Wave Mechanics Applied to Semiconductor Het-erostructures, Halsted; Les Ulis, Les Editions de Physique, New York (1988); M.J. Kelly, Low Dimensional Semiconductors: Materials, Physics, Technology, Devices (Oxford University Press, Oxford, 1995); C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Boston Academic Press, Boston, 1991)

    Article  ADS  Google Scholar 

  8. N.T. Linch, Festkorperprobleme 23, 27 (1985)

    Google Scholar 

  9. D.R. Sciferes, C. Lindstrom, R.D. Burnham, W. Streifer, T.L. Paoli, Electron. Lett. 19, 170 (1983)

    Google Scholar 

  10. P.M. Solomon, Proc. IEEE, 70, 489 (1982; T.E. Schlesinger and T. Kuech, Appl. Phys. Lett. 49, 519 (1986)

    Article  Google Scholar 

  11. D. Kasemet, C.S. Hong, N.B. Patel, P.D. Dapkus, Appl. Phys. Lett. 41, 912 (1982); K. Woodbridge, P. Blood, E.D. Pletcher, P.J. Hulyer, Appl. Phys. Lett. 45, 16 (1984); S. Tarucha, H.O. Okamoto, Appl. Phys. Lett. 45, 16 (1984); H. Heiblum, D.C. Thomas, C.M. Knoedler, M.I. Nathan, Appl. Phys. Lett. 47, 1105 (1985)

    Article  ADS  Google Scholar 

  12. O. Aina, M. Mattingly, F.Y. Juan, P.K. Bhattacharyya, Appl. Phys. Lett. 50, 43 (1987)

    Article  ADS  Google Scholar 

  13. I. Suemune, L.A. Coldren, IEEE J. Quant. Electron. 24, 1178 (1988)

    Article  Google Scholar 

  14. D.A.B. Miller, D.S. Chemla, T.C. Damen, J.H. Wood, A.C. Burrus, A.C. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21, 1462 (1985)

    Article  ADS  Google Scholar 

  15. A.N. Chakravarti, K.P. Ghatak, A. Dhar, K.K. Ghosh, S. Ghosh, Appl. Phys. A26, 169 (1981); S. Choudhury, L.J. Singh, K.P. Ghatak, Nanotechnology, 15, 180 (2004)

    ADS  Google Scholar 

  16. J.O. Dimmock, in Physics of Semimetals and Narrow Gap Compounds, ed. by D.L. Carter, R.T. Bates (Pergamon Press, Oxford, 1971, pp. 319)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). The Einstein Relation in Compound Semiconductors Under Size Quantization. In: Einstein Relation in Compound Semiconductors and their Nanostructures. Springer Series in Materials Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79557-5_5

Download citation

Publish with us

Policies and ethics