Advertisement

Efficient Multi-source Data Dissemination in Peer-to-Peer Networks

  • Zhenyu Li
  • Zengyang Zhu
  • Gaogang Xie
  • Zhongcheng Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4982)

Abstract

More and more emerging Peer-to-Peer applications require the support for multi-source data dissemination. These applications always consist of a large number of dynamic nodes which are heterogeneous in terms of capacity and spread over the entire Internet. Therefore, it is a challenge work to design an efficient data disseminate scheme. Existing studies always ignore the node proximity information or have high redundancy or high maintenance overhead. This paper presents EMS, an efficient multi-source data dissemination in P2P networks. By leveraging node heterogeneity, nodes are organized in a two-layer structure: the upper layer is based on DHT protocol and composed of powerful and stable nodes, while the nodes at the lower layer attach to physically close upper layer nodes. Data objects are replicated and forwarded along implicit trees, which are based on DHT route table. The average path length for delivering objects to all nodes converges to O(log n) automatically, where n is the number of nodes in the application. We perform extensive simulations to show the efficacy in terms of delivery path length, delay, redundancy and the effect of proximity-awareness.

Keywords

Multi-source multicast Data Dissemination P2P Networks 

References

  1. 1.
    El-Ansary, S., Alima, L.O., Brand, P., Haridi, S.: Efficient Broadcast in Structured P2P Networks. In: Proc. of IPTPS 2003 (2003)Google Scholar
  2. 2.
    Saroiu, S., Gummadi, P.K., Gribble, S.D.: A Measurement Strudy of Peer-to-Peer File Sharing Systems. In: Proc. of MMCN 2002 (2002)Google Scholar
  3. 3.
    Datta, A., Hauswirth, M., Aberer, K.: Updates in Highly Unreliable, Replicated Peer-to-Peer Systems. In: Proc. of ICDCS 2003 (2003)Google Scholar
  4. 4.
    Zhang, Z., Chen, S., Ling, Y., Chow, R.: Resilient Capacity-Aware Multicast Based on Overlay Networks. In: Proc. of ICDCS 2005 (2005)Google Scholar
  5. 5.
    Chen, S., Shi, B., Chen, S.: ACOM: Any-source Capacity-constrained Overlay Multicast in Non-DHT P2P Networks. IEEE Trans. on Parallel and Distributed Systems 18(9), 1188–1201 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhang, X., Liu, J., Li, B., Yum, T.-S.P.: DONet/CoolStreaming:A Data-Driven Overlay Network for Live Media Streaming. In: Proc. of INFOCOM 2005 (2005)Google Scholar
  7. 7.
    Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous Unstructured Tree-based Peer to Peer Multicast. In: Proc. of ICNP 2006 (2006)Google Scholar
  8. 8.
    Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable Application Layer Multicast. In: Proc. of SIGCOMM 2002 (2002)Google Scholar
  9. 9.
    Chu, Y.-H., Rao, S.G., Seshan, S., Zhang, H.: A Case for End System Multicast. IEEE Journal on Selected Areas in Communication (JSAC) 20 (2002)Google Scholar
  10. 10.
    Shen, H., Xu, C.: Hash-based Proximity Clustering for Load Balancing in Heterogeneous DHT Networks. In: Proc. of IPDPS 2006 (2006)Google Scholar
  11. 11.
    Wang, F., Xiong, Y., Liu, J.: mTreebone: A Hybrid Tree/Mesh Overlay for Application-Layer Live Video Multicast. In: Proc. of ICDCS 2007 (2007)Google Scholar
  12. 12.
    Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: Splitstream: High-bandwidth Multicast in Cooperative Environments. In: Proc. of SOSP 2003 (2003)Google Scholar
  13. 13.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. In: Proc. of SIGCOMM 2001 (2001)Google Scholar
  14. 14.
    Gnutella Protocol Specification v0.6. http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
  15. 15.
    Xu, Z., Tang, C., Zhang, Z.: Building Topology-Aware Overlays using Global Soft-State. In: Proc. of ICDSC 2003 (2003)Google Scholar
  16. 16.
    Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmaier, P.: Space Filling Curves and Their Use in Geometric Data Structures. Theoretical Computer Science (1997)Google Scholar
  17. 17.
    Gummadi, K.P., Gummadi, R., Gribble, S.D., Ratnasamy, S., Shenker, S., Stoica, I.: The Impact of DHT Routing Geometry on Resilience and Proximity. In: Proc. of SIGCOMM 2003 (2003)Google Scholar
  18. 18.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to Model an Internetwork. In: Proc. of INFOCOM 1996 (1996)Google Scholar
  19. 19.
    Li, Z., Xie, G., Li, Z.: Efficient Multi-source Data Dissemination in Peer-to-Peer Networks, Technical Report, available on request (November 2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Zhenyu Li
    • 1
    • 2
  • Zengyang Zhu
    • 1
    • 2
  • Gaogang Xie
    • 1
  • Zhongcheng Li
    • 1
  1. 1.Institute of Computing TechnologyChinese Academy of SciencesChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations