Advertisement

End-to-End Proportional Loss Differentiation in OBS Networks

  • Miguel A. González-Ortega
  • José C. López-Ardao
  • Pablo Argibay-Losada
  • Andrés Suárez-González
  • Cándido López-García
  • Manuel Fernández-Veiga
  • Raúl F. Rodríguez-Rubio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4982)

Abstract

Proportional loss differentiation in OBS networks has recently received much attention since it allows to provide a quantitative differentiation between classes, so facilitating network operations and pricing to providers, but without the complexity involved by the absolute loss differentiation.

Although edge-to-edge differentiation must be the ultimate aim, most of the methods in the literature are per-hop-based, and it is well-known that guaranteeing per-hop proportional loss does not guarantee end-to-end proportional loss.

In this paper we modestly try to fill the gap which exists in this field, and so, we propose and analyze a new method to obtain edge-to-edge proportional loss differentiation for WDM-based OBS networks. This method is based on the idea of trunk and wavelength reservation, already used in circuit switched networks and deflection routing in OBS networks.

Through extensive simulation experiments and analysis, we compare the performance of our mechanism to another mechanism proposed in the literature, based on using additional offset.

Keywords

Burst Size Optical Burst Switching Core Node Data Burst Burst Head Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Qiao, C., Yoo, M.: Optical burst switching (OBS)-a new paradigm for an optical internet. Journal of High Speed Networks 8(1), 69–84 (1999)Google Scholar
  2. 2.
    Yoo, M., Qiao, C., Dixit, S.: QoS performance of optical burst switching in IP-over-WDM networks. IEEE Journal on Selected Areas in Communications 18(10), 2062–2071 (2000)CrossRefGoogle Scholar
  3. 3.
    Tan, S.K., Mohan, G., Chua, K.C.: Feedback-based offset time selection for end-to-end proportional QoS provisioning in WDM optical burst switching networks. Computer Communications 30(4), 904–921 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Hamdi, M., Tsang, D.H.K.: Proportional QoS over OBS networks. In: Proc. of GLOBECOM, November 2001, vol. 3, pp. 1510–1514. IEEE, Los Alamitos (2001)Google Scholar
  5. 5.
    Zhang, Q., Vokkarane, V., Jue, J., Chen, B.: Absolute QoS differentiation in optical burst-switched networks. IEEE Journal on Selected Areas in Communications 22(9), 1781–1795 (2004)CrossRefGoogle Scholar
  6. 6.
    Zhou, B., Bassiouni, M.A.: Supporting differentiated quality of service in optical burst switched networks. Optical Engineering 45(1) (January 2006)Google Scholar
  7. 7.
    Liao, W., Loi, C.-H.: Providing service differentiation for optical-burst-switched networks. Journal of Lightwave Technology 22(7), 1651–1660 (2004)CrossRefGoogle Scholar
  8. 8.
    Vokkarane, V.M., Jue, J.P.: Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks. IEEE Journal on Selected Areas in Communications 21(7), 1198–1209 (2003)CrossRefGoogle Scholar
  9. 9.
    Gurusamy, M., Tan, C., Lui, J.: Achieving proportional loss differentiation using probabilistic preemptive burst segmentation in optical burst switching WDM networks. In: Proc. of GLOBECOM, November-December 2004, vol. 3, pp. 1754–1758. IEEE, Los Alamitos (2004)Google Scholar
  10. 10.
    Yang, M., Zheng, S.Q., Verchere, D.: A QoS supporting scheduling algorithm for optical burst switching DWDM networks. In: Proc. of GLOBECOM, November 2001, vol. 1, pp. 86–91. IEEE, Los Alamitos (2001)Google Scholar
  11. 11.
    Chen, Y., Qiao, C., Hamdi, M., Tsang, D.H.K.: Proportional differentiation: a scalable QoS approach. IEEE Communications Magazine 41(6), 52–58 (2003)CrossRefGoogle Scholar
  12. 12.
    Wei, J.Y., McFarland, R.I.: Just-in-time signaling for WDM optical burst switching networks. Journal of Lightwave Technology 18(12), 2019–2037 (2000)CrossRefGoogle Scholar
  13. 13.
    Krupp, R.S.: Stabilization of alternate routing networks. In: Proc. of ICC, June 1982, pp. 1–31. IEEE, Los Alamitos (1982)Google Scholar
  14. 14.
    Zalesky, A., Vu, H., Rosberg, Z., Wong, E., Zukerman, M.: Modelling and performance evaluation of optical burst switched networks with deflection routing and wavelength reservation. In: Proc. of INFOCOM, March 2004, IEEE, Los Alamitos (2004)Google Scholar
  15. 15.
    Xiong, Y., Vandenhoute, M., Cankaya, H.C.: Design and analysis of optical burst-switched networks. In: Senior, J.M., Qiao, C., Dixit, S. (eds.) Proc. of SPIE, SPIE, vol. 3843, pp. 112–119 (1999)Google Scholar
  16. 16.
    Suárez-González, A., López-Ardao, J.C., López-García, C., Fernández-Veiga, M., Rodríguez-Rubio, R.F., Sousa-Vieira, M.E.: A new heavy-tailed discrete distribution for LRD M/G/inf sample generation. Performance Evaluation 47(2-3), 197–219 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Argibay-Losada, P., Suárez-González, A., Veiga, M.F., Rodríguez-Rubio, R., López-García, C.: Evaluation of optical burst switching as a multiservice environment. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., de Oliveira, J.C., McNair, J. (eds.) NETWORKING 2007. LNCS, vol. 4479, pp. 970–980. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Miguel A. González-Ortega
    • 1
  • José C. López-Ardao
    • 1
  • Pablo Argibay-Losada
    • 1
  • Andrés Suárez-González
    • 1
  • Cándido López-García
    • 1
  • Manuel Fernández-Veiga
    • 1
  • Raúl F. Rodríguez-Rubio
    • 1
  1. 1.Departmento Enxeñería TelemáticaUniversity of VigoSpain

Personalised recommendations