Advertisement

Early Overhearing Avoidance in Wireless Sensor Networks

  • Siquan Hu
  • Mehul Motani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4982)

Abstract

To reduce the overhearing cost of long preambles in low power listening (LPL), we propose an early overhearing avoidance technique, in which the destination address is embedded into the continuous preamble. The overhearing can be stopped after receiving a short preamble block, which is much earlier than after the whole data packet is received. Based on this idea, a novel low power media access control (MAC) protocol called asynchronous pseudo preamble listening (APPL) is designed to improve the power efficiency of LPL. Both analysis and experiments show that APPL saves more power than LPL, especially on nodes with more neighbors and fewer children.

Keywords

Overhearing avoidance Wireless sensor networks Medium access control 

References

  1. 1.
    Ye, W., Heidemann, J.S., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: INFOCOM, pp. 1567–1576 (2002)Google Scholar
  2. 2.
    van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: ACM SenSys. pp. 171–180 (2003)Google Scholar
  3. 3.
    Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-efficient collision-free medium access control for wireless sensor networks. In: ACM SenSys. pp. 181–192 (2003)Google Scholar
  4. 4.
    El-Hoiydi, A.: Aloha with preamble sampling for sporadic traffic in ad hoc wireless sensor networks. In: IEEE ICC., pp. 3418–3423 (2002)Google Scholar
  5. 5.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: ACM SenSys. pp. 95–107 (2004)Google Scholar
  6. 6.
    El-Hoiydi, A., Decotignie, J.D.: WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. In: First Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks, July 2004, pp. 18–31 (2004)Google Scholar
  7. 7.
    Halkes, G.P., van Dam, T., Langendoen, K.G.: Comparing energy-saving MAC protocols for wireless sensor networks. Mob. Netw. Appl. 10(5), 783–791 (2005)CrossRefGoogle Scholar
  8. 8.
    Hill, J., Culler, D.: Mica: A wireless platform for deeply embedded networks. IEEE Micro. 22(6), 12–24 (2002)CrossRefGoogle Scholar
  9. 9.
    Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., Stoica, I.: A unifying link abstraction for wireless sensor networks. In: ACM SenSys. pp. 76–89 (2005)Google Scholar
  10. 10.
    Ganeriwal, S., Ganesan, D., Shim, H., Tsiatsis, V., Srivastava, M.B.: Estimating clock uncertainty for efficient duty-cycling in sensor networks. In: ACM SenSys. pp. 130–141 (2005)Google Scholar
  11. 11.
    Ye, W., Silva, F., Heidemann, J.: Ultra-low duty cycle MAC with scheduled channel polling. In: ACM SenSys. pp. 321–334 (2006)Google Scholar
  12. 12.
    Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: ACM SenSys. pp. 307–320 (2006)Google Scholar
  13. 13.
    Miller, M.J., Vaidya, N.H.: A MAC protocol to reduce sensor network energy consumption using a wakeup radio. IEEE Trans. Mobile Comput. 4(3), 228–242 (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Siquan Hu
    • 1
  • Mehul Motani
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingapore

Personalised recommendations