Advertisement

A Measurement Study of Bandwidth Estimation in IEEE 802.11g Wireless LANs Using the DCF

  • Michael Bredel
  • Markus Fidler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4982)

Abstract

In this paper we present results from an extensive measurement study of wireless bandwidth estimation in IEEE 802.11 WLANs using the distributed coordination function. We show that a number of known iterative probing methods, which are based on the assumption of first-come first-serve scheduling, can be expected to report the fair bandwidth share of a new flow rather than the available bandwidth. Our measurement results confirm this view and we conclude that under the current probe gap and probe rate models the fair share can only be loosely related to the available bandwidth. Like a few other studies we report that packet sizes have a tremendous impact on bandwidth estimates. Unlike these studies we can, however, show that minor modifications to known methods for wired networks, such as Pathload, can solve previously indicated limitations of these methods in wireless networks.

Keywords

Medium Access Control Wireless Link Packet Size Distribute Coordination Function Fair Share 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D-ITG: Distributed Internet Traffic Generator, http://www.grid.unina.it/software/ITG
  2. 2.
    dd-wrt: Linux wireless router, http://www.dd-wrt.com
  3. 3.
    Emulab: Network emulation testbed, http://www.emulab.org
  4. 4.
    ns-2: Network simulator, http://www.isi.edu/nsnam/ns
  5. 5.
    Rude/Crude: Real-time UDP Data Emitter/Collector, http://rude.sourceforge.net
  6. 6.
    Amambra, A., Hou, K.M., Chanet, J.-P.: Evaluation of the performance of the SLoPS: Available bandwidth estimation technique in IEEE 802.11b wireless networks. In: Proc. of IFIP NTMS, May 2007, pp. 123–132 (2007)Google Scholar
  7. 7.
    Berger-Sabbatel, G., Duda, A., Heusse, M., Rousseau, F.: Short-term fairness of 802.11 networks with several hosts. In: Proc. of IFIP MWCN, October 2004, pp. 263–274 (2004)Google Scholar
  8. 8.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE JSAC 18(3), 535–547 (2000)MathSciNetGoogle Scholar
  9. 9.
    Botta, A., Pescape, A., Ventre, G.: Improving accuracy in available bandwidth estimation for IEEE 802.11-based ad hoc networks. In: Proc. of IEEE Systems Communications, August 2005, pp. 287–292 (2005)Google Scholar
  10. 10.
    Hu, N., Steenkiste, P.: Evaluation and characterization of available bandwidth probing techniques. IEEE JSAC 21(6), 879–894 (2003)Google Scholar
  11. 11.
    Jacobson, V.: Congestion avoidance and control. In: Proc. of ACM SIGCOMM, August 1988, pp. 273–288 (1988)Google Scholar
  12. 12.
    Jain, M., Dovrolis, C.: End-to-end available bandwidth: measurement methodology, dynamics, and relation with tcp throughput. IEEE/ACM TON 11(4), 537–549 (2003)CrossRefGoogle Scholar
  13. 13.
    Jain, M., Dovrolis, C.: Ten fallacies and pitfalls on end-to-end available bandwidth estimation. In: Proc. of ACM IMC, October 2004, pp. 272–277 (2004)Google Scholar
  14. 14.
    Johnsson, A., Melander, B., Björkman, M.: Diettopp: A first implementation and evaluation of a simplified bandwidth measurement method. In: Proc. of SNCNW (November 2004)Google Scholar
  15. 15.
    Johnsson, A., Melander, B., Björkman, M.: Bandwidth measurement in wireless networks. In: Proc. of Med-Hoc-Net (June 2005)Google Scholar
  16. 16.
    Johnsson, A., Melander, B., Björkman, M.: An analysis of active end-to-end bandwidth measurements in wireless networks. In: Proc. of IEEE/IFIP E2EMON, April 2006, pp. 74–81 (2006)Google Scholar
  17. 17.
    Keshav, S.: A control-theoretic approach to flow control. In: Proc. of ACM SIGCOMM, September 1991, pp. 3–15 (1991)Google Scholar
  18. 18.
    Koksal, C.E., Kassab, H., Balakrishnan, H.: An analysis of short-term fairness in wireless media access protocols. In: Proc. of ACM SIGMETRICS, June 2000, pp. 118–119 (2000)Google Scholar
  19. 19.
    Lakshminarayanan, K., Padmanabhan, V.N., Padhye, J.: Bandwidth estimation in broadband access networks. In: Proc. of ACM IMC, October 2004, pp. 314–321 (2004)Google Scholar
  20. 20.
    Lee, H.K., Hall, V., Yum, K.H., Kim, K.I., Kim, E.J.: Bandwidth estimation in wireless LANs for multimedia streaming services. In: Proc. of IEEE ICME, July 2006, pp. 1181–1184 (2006)Google Scholar
  21. 21.
    Li, M., Claypool, M., Kinicki, R.: WBest: A bandwidth estimation tool for multimedia streaming application over IEEE 802.11 wireless networks. Technical Report WPI-CS-TR-06-14, Computer Science Department, Worcester Polytechnic Institute (March 2006)Google Scholar
  22. 22.
    Liebeherr, J., Fidler, M., Valaee, S.: A min-plus system interpretation of bandwidth estimation. In: Proc. of IEEE INFOCOM, May 2007, pp. 1127–1135 (2007)Google Scholar
  23. 23.
    Liu, X., Ravindran, K., Loguinov, D.: A queuing-theoretic foundation of available bandwidth estimation: Single-hop analysis. IEEE/ACM Trans. Networking 15(4), 918–931 (2007)CrossRefGoogle Scholar
  24. 24.
    Liu, X., Ravindran, K., Loguinov, D.: A stochastic foundation of available bandwidth estimation: Multi-hop analysis. IEEE/ACM Trans. Networking 16(2) (2008)Google Scholar
  25. 25.
    Machiraju, S., Veitch, D., Baccelli, F., Bolot, J.: Adding definition to active probing. ACM SIGCOMM Computer Communication Review 37(2), 19–28 (2007)CrossRefGoogle Scholar
  26. 26.
    Melander, B., Björkman, M., Gunningberg, P.: Regression-based available bandwidth measurements. In: Proc. of SPECTS (July 2002)Google Scholar
  27. 27.
    Ribeiro, V.J., Riedi, R.H., Baraniuk, R.G., Navratil, J., Cottrell, L.: Pathchirp: Efficient available bandwidth estimation for network paths. In: Proc. of PAM (April 2003)Google Scholar
  28. 28.
    Sarr, C., Chaudet, C., Chelius, G., Lassous, I.G.: Improving accuracy in available bandwidth estimation for IEEE 802.11-based ad hoc networks. In: Proc. of IEEE MASS, October 2006, pp. 517–520 (2006)Google Scholar
  29. 29.
    Shriram, A., Kaur, J.: Empirical evaluation of techniques for measuring available bandwidth. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communications, May 2007, pp. 2162–2170. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  30. 30.
    Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth estimation tools. In: Proc. of ACM IMC, October 2003, pp. 39–41 (2003)Google Scholar
  31. 31.
    White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed systems and networks. In: Proc. USENIX OSDI, December 2002, pp. 255–270 (2002)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Michael Bredel
    • 1
  • Markus Fidler
    • 1
  1. 1.Multimedia Communications LabTechnische Universität DarmstadtGermany

Personalised recommendations