Can Critical Real-Time Services of Public Infrastructures Run over Ethernet and MPLS Networks?

  • Jaime Lloret
  • Francisco Javier Sanchez
  • Hugo Coll
  • Fernando Boronat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4982)


With the adoption of Ethernet-IP as the main technology for building end-to-end real-time networks, the requirement to deliver high availability, quality and secure services over Ethernet and MPLS has become strategic. Critical real-time traffic is generally penalized and the maximum restoration time of 50 msec. sometimes is exceeded because of devices hangings or the high delay to find an alternative path. Existing standard networks are not ready to transport real-time critical information. This issue must be solved specially in critical infrastructures such as railway control systems, because passengers’ safety could be committed. In this work, first we have checked in which conditions the devices of the network will have a reply in real-time. Then, we will explain why existing Ethernet and MPLS combined solutions don’t offer recovery time lower than 50 msec., and we will propose a new approach that achieves these conditions. Our statements are based on real measurements in real railway environments and using real testbeds.


real-time networks critical systems Ethernet MPLS 


  1. 1.
    Sánchez, F.J., Lloret, J., Díaz, J.R., Jiménez, J.M.: Mecanismos de protección y recuperación en redes de tiempo real para el soporte de servicios de explotación ferroviaria, Gandia (Spain). In: XX Simposium Nacional de la URSI (September 2005)Google Scholar
  2. 2.
    Sánchez, F.J., Lloret, J., Díaz, J.R., Jiménez, J.M.: Standardization and improvement of real time network technology on railway traffic control systems. In: 7th World Congress on Railway Research, Montreal (June 2006)Google Scholar
  3. 3.
    Lloret, J., Sánchez, F.J., Díaz, J.R., Jiménez, J.M.: A fault-tolerant protocol for railway control systems. In: 2nd Conference on Next Generation Internet Design and Engineering, Valencia (Spain) (April 2006)Google Scholar
  4. 4.
    Harrison, E., Farrel, A., Miller, B.: Protection and restoration in MPLS networks. Data Connection White Paper (October 2001)Google Scholar
  5. 5.
    Aggarwal, R., Kompella, K., Nadeau, T., Swallow, G.: BFD For MPLS LSPs (November 2007)Google Scholar
  6. 6.
    Amin, M., Ho, K., Pavlou, G.: MPLS QoS-aware Traffic Engineering for Network Resilience. In: Proceedings of London Communications Symposium, London, UK (September 2004)Google Scholar
  7. 7.
    IEEE Std 802.17B. Resilient packet ring (RPR) access method and physical layer specifications. pp.1-216 (August 2007)Google Scholar
  8. 8.
    Shah, S., Yip, M.: IETF RFC 3619, October 2003. Ethernet Automatic Protection Switching (2003)Google Scholar
  9. 9.
    Dirac, G.A.: Extensions of Menger’s Theorem. Journal of the London Mathematical Societ s1-38(1), 148–161 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hansen, A.F., Kvalbein, A., Cicic, T., Gjessing, S., Lysne, O.: Resilient Routing Layers for Recovery in Packet Networks. In: Proceedings of the International Conference on Dependable Systems and Networks, June 28 - July 1, 2005, pp. 238–247 (2005)Google Scholar
  11. 11.
    Stamatelakis, D., Grover, W.D.: IP layer restoration and network planning based on virtual protection cycles. IEEE Journal on selected areas in communications 18(10) (October 2000)Google Scholar
  12. 12.
    Padmaraj, M., Nair, S., Marchetti, M., Chiruvolu, G., Ali, M.: Distributed Fast Failure Recovery Scheme for Metro Ethernet. IEEE ICN, Los Alamitos (April 2006)zbMATHGoogle Scholar
  13. 13.
    Coll, H., Lloret, J., Sanchez, F.J.: Does ns2 really simulate MPLS networks? In: The 4th Int. Conf. on Autonomic and Autonomous Systems (March 2008)Google Scholar
  14. 14.
    IEEE Std 802.1AB- Draft 2 d2-2. Station and Media Access Control Connectivity Discovery (December 2007)Google Scholar
  15. 15.
    IEEE Std 802.1D. Media Access Control (MAC) Bridges (June 2004)Google Scholar
  16. 16.
    IEEE Std 802.1AD. Provider Bridge (May 2006)Google Scholar
  17. 17.
    Eppstein, D.: Finding the k Shortest Paths. SIAM J. Computing 28(2), 652–673 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sharma, S., Gopalan, K., Nanda, S., Chiueh, T.: Viking: a multi-spanning-tree Ethernet Architecture for Metropolitan Area and Cluster Networks. In: IEEE INFOCOM (2004)Google Scholar
  19. 19.
    IEEE 802.1AQ draft 0.3. Shortest Path Bridging (May 2006)Google Scholar
  20. 20.
    IEEE 802.1AG draft 8.1. Connectivity Fault Management (February 2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Jaime Lloret
    • 1
  • Francisco Javier Sanchez
    • 2
  • Hugo Coll
    • 1
  • Fernando Boronat
    • 1
  1. 1.Department of CommunicationsPolytechnic University of ValenciaValenciaSpain
  2. 2.ADIFValenciaSpain

Personalised recommendations