Skip to main content

Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles

  • Conference paper
Computer Vision Systems (ICVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Included in the following conference series:

Abstract

This paper describes an algorithm for visually computing the ego-motion of a vehicle relative to the road under the assumption of planar motion. The algorithm uses only images taken by a single omnidirectional camera mounted on the roof of the vehicle. The front ends of the system are two different trackers. The first one is a homography-based tracker that detects and matches robust scale invariant features that most likely belong to the ground plane. The second one uses an appearance based approach and gives high resolution estimates of the rotation of the vehicle. This 2D pose estimation method has been successfully applied to videos from an automotive platform. We give an example of camera trajectory estimated purely from omnidirectional images over a distance of 400 meters. For performance evaluation, the estimated path is superimposed onto an aerial image. In the end, we use image mosaicing to obtain a textured 2D reconstruction of the estimated path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moravec, H.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. PhD thesis, Stanford University (1980)

    Google Scholar 

  2. Jung, I., Lacroix, S.: Simultaneous localization and mapping with stereovision. In: Robotics Research: The 11th International Symposium (2005)

    Google Scholar 

  3. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. Journal of Field Robotics (2006)

    Google Scholar 

  4. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the mars exploration rovers: Field reports. Journal of Field Robotics 24(3), 169–186 (2007)

    Article  Google Scholar 

  5. Corke, P.I., Strelow, D., Singh, S.: Omnidirectional visual odometry for a planetary rover. In: IROS (2004)

    Google Scholar 

  6. Wang, H., Yuan, K., Zou, W., Zhou, Q.: Visual odometry based on locally planar ground assumption. In: IEEE International Conference on Information Acquisition, pp. 59–64 (2005)

    Google Scholar 

  7. Ke, Q., Kanade, T.: Transforming camera geometry to a virtual downward-looking camera: Robust ego-motion estimation and ground-layer detection. In: CVPR 2003 (June 2003)

    Google Scholar 

  8. Guerrero, J.J., Martinez-Cantin, R., Sagues, C.: Visual map-less navigation based on homographies. Journal of Robotic Systems 22(10), 569–581 (2005)

    Article  MATH  Google Scholar 

  9. Liang, B., Pears, N.: Visual navigation using planar homographies. In: IEEE ICRA, pp. 205–210 (2002)

    Google Scholar 

  10. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)

    Google Scholar 

  11. Tsai, R., Huang, T.: Estimating three-dimensional motion parameters of a rigid planar patch. IEEE Trans. Acoustics, Speech and Signal Processing 29(6), 1147–1152 (1981)

    Article  Google Scholar 

  12. Longuet-Higgins, H.C.: The reconstruction of a plane surface from two perspective projections. Royal Society London 277, 399–410 (1986)

    Article  Google Scholar 

  13. Faugeras, O.D., Lustman, F.: Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Inteligence (3), 485–508 (1988)

    Google Scholar 

  14. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Scaramuzza, D., Martinelli, A., Siegwart, R.: A flexible technique for accurate omnidirectional camera calibration and structure from motion. In: ICVS (january 2006)

    Google Scholar 

  16. Labrosse, F.: The visual compass: performance and limitations of an appearance-based method. Journal of Field Robotics 23(10), 913–941 (2006)

    Article  Google Scholar 

  17. Wunderlich, W.: Rechnerische Rekonstruktion eines ebenen Objekts aus zwei Photographien. Mitteilungen der geodaetischen Institute, TU Graz 40, 365–377 (1982)

    Google Scholar 

  18. Triggs, B.: Autocalibration from planar scenes. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 89–105. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scaramuzza, D., Siegwart, R. (2008). Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics