Skip to main content

Lectures on Black Holes and the AdS3/CFT2 Correspondence

  • Chapter
  • First Online:
Supersymmetric Mechanics - Vol. 3

Part of the book series: Lecture Notes in Physics ((LNP,volume 755))

Abstract

We present a detailed discussion of AdS_3 black holes and their connection to two-dimensional conformal field theories via the AdS/CFT correspondence. Our emphasis is on deriving refined versions of black hole partition functions that include the effect of higher derivative terms in the spacetime action as well as non-perturbative effects. We include background material on gravity in AdS_3, in the context of holographic renormalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].

    Article  ADS  MathSciNet  Google Scholar 

  2. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998)

    MATH  ADS  MathSciNet  Google Scholar 

  3. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [arXiv:hep-th/9711200].

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Emparan and G. T. Horowitz, “Microstates of a neutral black hole in M theory,” arXiv:hep-th/0607023.

    Google Scholar 

  5. M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hep-th/9204099].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1) black hole,” Phys. Rev. D 48, 1506 (1993) [arXiv:gr-qc/9302012].

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Dabholkar, F. Denef, G. W. Moore and B. Pioline, “Exact and asymptotic degeneracies of small black holes,” JHEP 0508, 021 (2005) [arXiv:hep-th/0502157].

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Dabholkar, F. Denef, G. W. Moore and B. Pioline, “Precision counting of small black holes,” JHEP 0510, 096 (2005) [arXiv:hep-th/0507014].

    Article  ADS  MathSciNet  Google Scholar 

  9. J. D. Brown and M. Henneaux, “Central charges in the canonical realization of asymptotic symmetries: An example from three-dimensional gravity,” Commun. Math. Phys. 104, 207 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. R. Dijkgraaf, J. M. Maldacena, G. W. Moore and E. P. Verlinde, “A black hole farey tail,” arXiv:hep-th/0005003.

    Google Scholar 

  11. D. Gaiotto, A. Strominger and X. Yin, “From AdS(3)/CFT(2) to black holes/topological strings,” arXiv:hep-th/0602046.

    Google Scholar 

  12. H. Ooguri, A. Strominger and C. Vafa, “Black hole attractors and the topological string,” Phys. Rev. D 70, 106007 (2004) [arXiv:hep-th/0405146].

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Kraus and F. Larsen, “Microscopic black hole entropy in theories with higher derivatives,” JHEP 0509, 034 (2005) [arXiv:hep-th/0506176].

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Kraus and F. Larsen, “Partition functions and elliptic genera from supergravity,” arXiv:hep-th/0607138.

    Google Scholar 

  15. J. M. Maldacena, “Black holes in string theory,” arXiv:hep-th/9607235.

    Google Scholar 

  16. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rep. 323, 183 (2000) [arXiv:hep-th/9905111].

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Mohaupt, “Black hole entropy, special geometry and strings,” Fortsch. Phys. 49, 3 (2001) [arXiv:hep-th/0007195].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. A. W. Peet, “TASI lectures on black holes in string theory,” arXiv:hep-th/0008241.

    Google Scholar 

  19. J. R. David, G. Mandal and S. R. Wadia, “Microscopic formulation of black holes in string theory,” Phys. Rep. 369, 549 (2002) [arXiv:hep-th/0203048].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. S. D. Mathur, “The quantum structure of black holes,” Class. Quant. Grav. 23, R115 (2006) [arXiv:hep-th/0510180].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. B. Pioline, “Lectures on on black holes, topological strings and quantum attractors,” arXiv:hep-th/0607227.

    Google Scholar 

  22. J. D. Brown and J. W. York, “Quasilocal energy and conserved charges derived from the gravitational,” Phys. Rev. D 47, 1407 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Fefferman and C.R. Graham, “Conformal invariants”, in Elie Cartan et les Mathématiques d’aujourd’hui (Astérisque, 1985) 95.

    Google Scholar 

  24. S. de Haro, S. N. Solodukhin and K. Skenderis, “Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence,” Commun. Math. Phys. 217, 595 (2001) [arXiv:hep-th/0002230].

    Article  MATH  ADS  Google Scholar 

  25. M. Henningson and K. Skenderis, “The holographic Weyl anomaly,” JHEP 9807, 023 (1998) [arXiv:hep-th/9806087].

    Article  MathSciNet  ADS  Google Scholar 

  26. V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity,” Commun. Math. Phys. 208, 413 (1999) [arXiv:hep-th/9902121].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. R. Emparan, C. V. Johnson and R. C. Myers, “Surface terms as counterterms in the AdS/CFT correspondence,” Phys. Rev. D 60, 104001 (1999) [arXiv:hep-th/9903238].

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Kraus, F. Larsen and R. Siebelink, “The gravitational action in asymptotically AdS and flat spacetimes,” Nucl. Phys. B 563, 259 (1999) [arXiv:hep-th/9906127].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. I. Papadimitriou and K. Skenderis, “Thermodynamics of asymptotically locally AdS spacetimes,” arXiv:hep-th/0505190.

    Google Scholar 

  30. S. Hollands, A. Ishibashi and D. Marolf, “Comparison between various notions of conserved charges in asymptotically AdS-spacetimes,” Class. Quant. Grav. 22, 2881 (2005) [arXiv:hep-th/0503045].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. S. Hollands, A. Ishibashi and D. Marolf, “Counter-term charges generate bulk symmetries,” arXiv:hep-th/0503105.

    Google Scholar 

  32. S. Nojiri and S. D. Odintsov, “Conformal anomaly for dilaton coupled theories from AdS/CFT correspondence,” Phys. Lett. B 444, 92 (1998) [arXiv:hep-th/9810008].

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, “Diffeomorphisms and holographic anomalies,” Class. Quant. Grav. 17, 1129 (2000) [arXiv:hep-th/9910267].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. H. Saida and J. Soda, “Statistical entropy of BTZ black hole in higher curvature gravity,” Phys. Lett. B 471, 358 (2000) [arXiv:gr-qc/9909061].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48, 3427 (1993) [arXiv:gr-qc/9307038].

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Wald, Phys. Rev. D 48 R3427 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50, 846 (1994) [arXiv:gr-qc/9403028].

    Google Scholar 

  38. V. Iyer and R. M. Wald, “A comparison of noether charge and euclidean methods for computing the entropy of stationary black holes,” Phys. Rev. D 52, 4430 (1995) [arXiv:gr-qc/9503052].

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Carlip and C. Teitelboim, “Aspects of black hole quantum mechanics and thermodynamics in (2+1)-dimensions,” Phys. Rev. D 51, 622 (1995) [arXiv:gr-qc/9405070].

    Article  ADS  MathSciNet  Google Scholar 

  40. J. M. Maldacena and A. Strominger, “AdS(3) black holes and a stringy exclusion principle,” JHEP 9812, 005 (1998) [arXiv:hep-th/9804085].

    Article  MathSciNet  ADS  Google Scholar 

  41. S. Elitzur, G. W. Moore, A. Schwimmer and N. Seiberg, “Remarks on the canonical quantization of the chern-simons-witten theory,” Nucl. Phys. B 326, 108 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Gukov, E. Martinec, G. W. Moore and A. Strominger, “Chern-Simons gauge theory and the AdS(3)/CFT(2) correspondence,” arXiv:hep-th/0403225.

    Google Scholar 

  43. D. Freed, J. A. Harvey, R. Minasian and G. W. Moore, “Gravitational anomaly cancellation for M-theory fivebranes,” Adv. Theor. Math. Phys. 2, 601 (1998) [arXiv:hep-th/9803205].

    MATH  MathSciNet  Google Scholar 

  44. J. A. Harvey, R. Minasian and G. W. Moore, “Non-abelian tensor-multiplet anomalies,” JHEP 9809, 004 (1998) [arXiv:hep-th/9808060].

    Article  MathSciNet  ADS  Google Scholar 

  45. J. Hansen and P. Kraus, “Generating charge from diffeomorphisms,” arXiv:hep-th/0606230.

    Google Scholar 

  46. P. Kraus and F. Larsen, “Holographic gravitational anomalies,” JHEP 0601, 022 (2006) [arXiv:hep-th/0508218].

    Article  ADS  MathSciNet  Google Scholar 

  47. L. Alvarez-Gaume and E. Witten, “Gravitational anomalies,” Nucl. Phys. B 234, 269 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  48. W. A. Bardeen and B. Zumino, “Consistent and covariant anomalies in gauge and gravitational theories,” Nucl. Phys. B 244, 421 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  49. P. H. Ginsparg, “Applications of topological and differential geometric methods to anomalies in quantum field theory,” HUTP-85/A056 To appear in Proc. of 16th GIFT Seminar on Theoretical Physics, Jaca, Spain, Jun 3–7, (1985)

    Google Scholar 

  50. S. Deser, R. Jackiw and S. Templeton, “Topologically massive gauge theories,” Annals Phys. 140, 372 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Deser, R. Jackiw and S. Templeton, “Topologically Massive Gauge Theories,” Annals Phys. (Erratum) Erratum. 185, 406 (1988) [APNYA, 281, 409 (1988 APNYA, 281, 409–449 (2000))].

    MathSciNet  Google Scholar 

  52. S. Deser, R. Jackiw and S. Templeton, “Three-dimensional massive gauge theories,” Phys. Rev. Lett. 48, 975 (1982).

    Article  ADS  Google Scholar 

  53. S. N. Solodukhin, “Holography with gravitational chern-simons,” Phys. Rev. D 74, 024015 (2006) [arXiv:hep-th/0509148];

    Article  ADS  Google Scholar 

  54. S. N. Solodukhin, “Holographic description of gravitational anomalies,” JHEP 0607, 003 (2006) [arXiv:hep-th/0512216].

    Article  ADS  MathSciNet  Google Scholar 

  55. J. M. Maldacena, A. Strominger and E. Witten, JHEP 9712, 002 (1997) [arXiv:hep-th/9711053].

    Article  ADS  MathSciNet  Google Scholar 

  56. C. G. Callan and J. A. Harvey, “Anomalies and fermion zero modes on strings and domain walls,” Nucl. Phys. B 250, 427 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  57. M. Cvetic and F. Larsen, “Near horizon geometry of rotating black holes in five dimensions,” Nucl. Phys. B 531, 239 (1998) [arXiv:hep-th/9805097].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S. F. Ross, “Supersymmetric conical defects: Towards a string theoretic description of black hole formation,” Phys. Rev. D 64, 064011 (2001) [arXiv:hep-th/0011217].

    Article  ADS  MathSciNet  Google Scholar 

  59. J. M. Maldacena and L. Maoz, “De-singularization by rotation,” JHEP 0212, 055 (2002) [arXiv:hep-th/0012025].

    Article  ADS  MathSciNet  Google Scholar 

  60. O. Lunin, J. M. Maldacena and L. Maoz, “Gravity solutions for the D1-D5 system with angular momentum,” arXiv:hep-th/0212210;

    Google Scholar 

  61. R. Minasian, G. W. Moore and D. Tsimpis, “Calabi-Yau black holes and (0,4) sigma models,” Commun. Math. Phys. 209, 325 (2000) [arXiv:hep-th/9904217].

    MATH  MathSciNet  ADS  Google Scholar 

  62. M. B. Green and J. H. Schwarz, “Supersymmetrical Dual String Theory. 2. Vertices and Trees,” Nucl. Phys. B 198, 252 (1982).

    Article  ADS  Google Scholar 

  63. D. J. Gross and E. Witten, “Superstring modifications of einstein’s equations,” Nucl. Phys. B 277, 1 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  64. W. Lerche, B. E. W. Nilsson and A. N. Schellekens, “Heterotic string loop calculation of the anomaly cancelling term,” Nucl. Phys. B 289, 609 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  65. M. J. Duff, J. T. Liu and R. Minasian, “Eleven-dimensional origin of string/string duality: A one-loop test,” Nucl. Phys. B 452, 261 (1995) [arXiv:hep-th/9506126].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. M. B. Green, M. Gutperle and P. Vanhove, “One loop in eleven dimensions,” Phys. Lett. B 409, 177 (1997) [arXiv:hep-th/9706175].

    Article  ADS  MathSciNet  Google Scholar 

  67. J. G. Russo and A. A. Tseytlin, “One-loop four-graviton amplitude in eleven-dimensional supergravity,” Nucl. Phys. B 508, 245 (1997) [arXiv:hep-th/9707134].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. P. S. Howe and D. Tsimpis, “On higher-order corrections in M theory,” JHEP 0309, 038 (2003) [arXiv:hep-th/0305129].

    Article  ADS  MathSciNet  Google Scholar 

  69. A. A. Tseytlin, “R**4 terms in 11 dimensions and conformal anomaly of (2,0) theory,” Nucl. Phys. B 584, 233 (2000) [arXiv:hep-th/0005072].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. I. Antoniadis, S. Ferrara, R. Minasian and K. S. Narain, “R**4 couplings in M- and type II theories on Calabi-Yau spaces,” Nucl. Phys. B 507, 571 (1997) [arXiv:hep-th/9707013].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  71. P. Kraus and F. Larsen, “Attractors and black rings,” Phys. Rev. D 72, 024010 (2005) [arXiv:hep-th/0503219].

    Article  ADS  MathSciNet  Google Scholar 

  72. R. Bott and A.S. Cattaneo, “Integral invariant of 3-manifolds,” [arxiv:dg-ga/9710001].

    Google Scholar 

  73. G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Macroscopic entropy formulae and non-holomorphic corrections for supersymmetric black holes”, Nucl. Phys. B 567, 87 (2000) [arXiv:hep-th/9906094].

    Article  MATH  Google Scholar 

  74. G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Deviations from the area law for supersymmetric black holes”, Fortsch. Phys. 48, 49 (2000) [arXiv:hep-th/9904005].

    Article  ADS  Google Scholar 

  75. G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Corrections to macroscopic supersymmetric black-hole entropy”, Phys. Lett. B 451, 309 (1999) [arXiv:hep-th/9812082].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  76. B. Sahoo and A. Sen, “Higher derivative corrections to non-supersymmetric extremal black holes in N=2 supergravity,” arXiv:hep-th/0603149.

    Google Scholar 

  77. A. Dabholkar, “Exact counting of black hole microstates”, [arXiv:hep-th/0409148].

    Google Scholar 

  78. A. Dabholkar, R. Kallosh and A. Maloney, “A stringy cloak for a classical singularity”, JHEP 0412, 059 (2004), [arXiv:hep-th/0410076].

    Article  ADS  MathSciNet  Google Scholar 

  79. A. Sen, “How does a fundamental string stretch its horizon?,” JHEP 0505, 059 (2005) [arXiv:hep-th/0411255]

    Article  ADS  Google Scholar 

  80. A. Sen, “Black holes, elementary strings and holomorphic anomaly,” arXiv:hep-th/0502126;

    Google Scholar 

  81. A. Sen, “Stretching the horizon of a higher dimensional small black hole,” arXiv:hep-th/0505122.

    Google Scholar 

  82. “Black hole entropy function and the attractor mechanism in higher derivative gravity,” arXiv:hep-th/0506177.

    Google Scholar 

  83. “Entropy function for heterotic black holes,” arXiv:hep-th/0508042.

    Google Scholar 

  84. J. Polchinski, “String theory”

    Google Scholar 

  85. T. Kawai, Y. Yamada and S. K. Yang, “Elliptic genera and N=2 superconformal field theory,” Nucl. Phys. B 414, 191 (1994) [arXiv:hep-th/9306096].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  86. G. W. Moore, “Les Houches lectures on strings and arithmetic,” arXiv:hep-th/0401049.

    Google Scholar 

  87. J. de Boer, M. C. N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, “A farey tail for attractor black holes,” arXiv:hep-th/0608059.

    Google Scholar 

  88. O. Lunin, J. M. Maldacena and L. Maoz, “Gravity solutions for the D1-D5 system with angular momentum,” arXiv:hep-th/0212210.

    Google Scholar 

  89. S. D. Mathur, “The fuzzball proposal for black holes: An elementary review,” Fortsch. Phys. 53, 793 (2005) [arXiv:hep-th/0502050].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  90. K. Goldstein, N. Iizuka, R. P. Jena and S. P. Trivedi, “Non-supersymmetric attractors,” Phys. Rev. D 72, 124021 (2005) [arXiv:hep-th/0507096].

    Article  ADS  MathSciNet  Google Scholar 

  91. D. Kutasov, F. Larsen and R. G. Leigh, “String theory in magnetic monopole backgrounds,” Nucl. Phys. B 550, 183 (1999) [arXiv:hep-th/9812027].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  92. F. Larsen, “The perturbation spectrum of black holes in N=8 supergravity,” Nucl. Phys. B 536, 258 (1998) [arXiv:hep-th/9805208].

    Article  ADS  Google Scholar 

  93. J. de Boer, “Six-dimensional supergravity on S**3 x AdS(3) and 2d conformal field theory,” Nucl. Phys. B 548, 139 (1999) [arXiv:hep-th/9806104].

    Article  MATH  ADS  Google Scholar 

  94. R. Gopakumar and C. Vafa, “M-theory and topological strings. I,” arXiv:hep-th/9809187.

    Google Scholar 

  95. R. Gopakumar and C. Vafa, “M-theory and topological strings. II,” arXiv:hep-th/9812127.

    Google Scholar 

  96. J. de Boer, “Large N elliptic genus and AdS/CFT correspondence,” JHEP 9905, 017 (1999) [arXiv:hep-th/9812240].

    Article  Google Scholar 

  97. Bena, I., Warner N.P.: Black Holes, Black Rings and their Microstates. Lect. Notes. Phys. 755, x–xx (2008)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kraus, P. (2008). Lectures on Black Holes and the AdS3/CFT2 Correspondence. In: Supersymmetric Mechanics - Vol. 3. Lecture Notes in Physics, vol 755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79523-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79523-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79522-3

  • Online ISBN: 978-3-540-79523-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics