Skip to main content

Orthogonality between Key Privacy and Data Privacy, Revisited

  • Conference paper
Information Security and Cryptology (Inscrypt 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4990))

Included in the following conference series:

Abstract

Key privacy is a notion regarding the privacy of the owner of a public key, which has important applications in building (receiver) anonymous channels, or privacy-enhanced authentication/signature schemes. Key privacy is considered to be an orthogonal (i.e., independent), notion from data privacy, while the key privacy of many public key encryption schemes has not been explored, though their data privacy is comparatively well understood. In this paper, we study key privacy of many practical encryption schemes and identify evidences that key privacy is not comparable to data privacy. We also formalize key privacy in the plaintext checking attack model and point out some generic transforms to enhance the key privacy of an encryption scheme. Interestingly, these well-known techniques have been used to enhance data security. Finally, we give detailed security analyses on the signed hashed-ElGamal encryption [27] in the random oracle model, of both key privacy and data security against chosen ciphertext attack. Again, this specific example supports our claim on the relation of two notions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: DHIES: An Encryption Scheme Based on the Diffie-Hellman Problem. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Abe, M.: Combining Encryption and Proof of Knowledge in the Random Oracle Model. The Computer Journal 47(1), 58–70 (2004)

    Article  MATH  Google Scholar 

  3. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

    Google Scholar 

  6. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption without Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg (2004)

    Google Scholar 

  7. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In: CCS 1993, pp. 62–73. ACM Press, New York (1993)

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing Chosen-Ciphertext Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003)

    Google Scholar 

  10. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Google Scholar 

  11. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. In: STOC 1991, pp. 542–552. ACM, New York (1991)

    Chapter  Google Scholar 

  12. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEE Transactions on Information Theory 31(4), 469–472 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fujisaki, E.: Plaintext Simulatability. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E-89A(1), 55–65 (2006)

    Article  Google Scholar 

  14. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–544. Springer, Heidelberg (1999)

    Google Scholar 

  16. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hayashi, R., Tanaka, K.: PA in the Two-Key Setting and a Generic Conversion for Encryption with Anonymity. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 271–282. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Herzog, J., Liskov, M., Micali, S.: Plaintext Awareness via Key Registration. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)

    Google Scholar 

  20. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: STOC 1990, pp. 427–437. ACM, New York (1990)

    Chapter  Google Scholar 

  21. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

    Google Scholar 

  24. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  25. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Crypto 1991. LNCS, vol. 567, pp. 433–444. Springer, Heidelberg (1991)

    Google Scholar 

  26. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4(3), 161–174 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schnorr, C.P., Jakobsson, M.: Security of Signed ElGamal Encryption. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  28. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  29. Steinfeld, R., Baek, J., Zheng, Y.: On the Necessity of Strong Assumptions for the Security of a Class of Asymmetric Encryption Schemes. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 241–256. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Tsiounis, Y., Yung, M.: On the Security of El Gamal based Encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  31. Zhang, R., Hanaoka, G., Imai, H.: Orthogonality between key privacy and data privacy, revisited. Full version of this paper (2007), http://staff.aist.go.jp/r-zhang/research/papers.html#KeyPrivacy

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dingyi Pei Moti Yung Dongdai Lin Chuankun Wu

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, R., Hanaoka, G., Imai, H. (2008). Orthogonality between Key Privacy and Data Privacy, Revisited. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds) Information Security and Cryptology. Inscrypt 2007. Lecture Notes in Computer Science, vol 4990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79499-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79499-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79498-1

  • Online ISBN: 978-3-540-79499-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics