Skip to main content

Computing Hilbert Class Polynomials

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5011))

Abstract

We present and analyze two algorithms for computing the Hilbert class polynomial H D . The first is a p-adic lifting algorithm for inert primes p in the order of discriminant D < 0. The second is an improved Chinese remainder algorithm which uses the class group action on CM-curves over finite fields. Our run time analysis gives tighter bounds for the complexity of all known algorithms for computing H D , and we show that all methods have comparable run times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agashe, A., Lauter, K., Venkatesan, R.: Constructing elliptic curves with a known number of points over a prime field. In: van der Poorten, A.J., Stein, A. (eds.) High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of H C Williams. Fields Inst. Commun., vol. 41, pp. 1–17 (2004)

    Google Scholar 

  2. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math. Comp. 61(203), 29–68 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bröker, R.: A p-adic algorithm to compute the Hilbert class polynomial. Math. Comp. (to appear)

    Google Scholar 

  4. Cerviño, J.M.: Supersingular elliptic curves and maximal quaternionic orders. In: Math. Institut G-A-Univ. Göttingen, pp. 53–60 (2004)

    Google Scholar 

  5. Cohen, H.: A Course in Computational Algebraic Number Theory. In: Graduate Texts in Mathematics, vol. 138, Springer, Heidelberg (1993)

    Google Scholar 

  6. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. In: Discrete Mathematics and its Applications, Chapman & Hall/CRC (2005)

    Google Scholar 

  7. Couveignes, J.-M., Henocq, T.: Action of modular correspondences around CM points. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 234–243. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg 14, 197–272 (1941)

    Article  MathSciNet  Google Scholar 

  9. Enge, A.: The complexity of class polynomial computation via floating point approximations. HAL-INRIA 1040 = arXiv:cs/0601104, INRIA (2006), http://hal.inria.fr/inria-00001040

  10. Enge, A., Schertz, R.: Constructing elliptic curves over finite fields using double eta-quotients. J. Théor. Nombres Bordeaux 16, 555–568 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  13. Kohel, D.: Endomorphism Rings of Elliptic Curves over Finite Fields. PhD thesis, University of California at Berkeley (1996)

    Google Scholar 

  14. Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Fröhlich, A. (ed.) Algebraic Number Fields (L-functions and Galois properties), pp. 409–464. Academic Press, London (1977)

    Google Scholar 

  15. Lang, S.: Elliptic Functions. In: GTM 112, 2nd edn., Springer, New York (1987)

    Google Scholar 

  16. Littlewood, J.E.: On the class-number of the corpus \({P}(\sqrt{-k})\). Proc. London Math. Soc. 27, 358–372 (1928)

    Article  MathSciNet  Google Scholar 

  17. Schertz, R.: Weber’s class invariants revisited. J. Théor. Nombres Bordeaux 14(1), 325–343 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Schoof, R.: The exponents of the groups of points on the reductions of an elliptic curve. In: van der Geer, G., Oort, F., Steenbrink, J. (eds.) Arithmetic Algebraic Geometry, pp. 325–335. Birkhäuser, Basel (1991)

    Google Scholar 

  19. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux 7, 219–254 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Schur, I.: Einige Bemerkungen zu der vorstehenden Arbeit des Herrn G. Pólya: Über die Verteilung der quadratischen Reste und Nichtreste. Nachr. Kön. Ges. Wiss. Göttingen, Math.-Phys. Kl, pp. 30–36 (1918)

    Google Scholar 

  21. Stevenhagen, P.: Hilbert’s 12th problem, complex multiplication and Shimura reciprocity. In: Miyake, K. (ed.) Class Field Theory—its Centenary and Prospect, pp. 161–176. Amer. Math. Soc. (2001)

    Google Scholar 

  22. Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. École Norm. Sup (4) 2, 521–560 (1969)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfred J. van der Poorten Andreas Stein

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belding, J., Bröker, R., Enge, A., Lauter, K. (2008). Computing Hilbert Class Polynomials. In: van der Poorten, A.J., Stein, A. (eds) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol 5011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79456-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79456-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79455-4

  • Online ISBN: 978-3-540-79456-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics