Skip to main content

Running Time Predictions for Factoring Algorithms

  • Conference paper
Algorithmic Number Theory (ANTS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5011))

Included in the following conference series:

Abstract

In 1994, Carl Pomerance proposed the following problem:

Select integers a1,a2,...,a J at random from the interval [1,x], stopping when some (non-empty) subsequence, { a i : i ∈ I} where I ⊆ { 1,2,...,J}, has a square product (that is \(\prod_{i\in I} a_i\in \mathbb Z^2\)). What can we say about the possible stopping times, J?

A 1985 algorithm of Schroeppel can be used to show that this process stops after selecting (1 + ε)J 0(x) integers a j with probability 1 − o(1) (where the function J 0(x) is given explicitly in (1) below. Schroeppel’s algorithm actually finds the square product, and this has subsequently been adopted, with relatively minor modifications, by all factorers. In 1994 Pomerance showed that, with probability 1 − o(1), the process will run through at least \(J_0(x)^{1-o(1)}\) integers a j , and asked for a more precise estimate of the stopping time. We conjecture that there is a “sharp threshold” for this stopping time, that is, with probability 1 − o(1) one will first obtain a square product when (precisely) \(\{e^{-\gamma}+o(1)\} J_0(x)\) integers have been selected. Herein we will give a heuristic to justify our belief in this sharp transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.: Handbook of mathematical functions. Dover Publications, New York (1965)

    Google Scholar 

  2. Buhler, J., Lenstra Jr., H.W., Pomerance, C.: Factoring integers with the number field sieve. Lecture Notes in Math., vol. 1554. Springer, Berlin (1993)

    Google Scholar 

  3. Crandall, R., Pomerance, C.: Prime numbers; A computational perspective. Springer, New York (2005)

    MATH  Google Scholar 

  4. Croot, E., Granville, A., Pemantle, R., Tetali, P.: Sharp transitions in making squares (to appear)

    Google Scholar 

  5. Dixon, J.D.: Asymptotically fast factorization of integers. Math. Comp. 36, 255–260 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dodson, B., Lenstra, A.K.: NFS with four large primes: an explosive experiment. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 372–385. Springer, Heidelberg (1995)

    Google Scholar 

  7. Ekkelkamp, W.: Predicting the sieving effort for the number field sieve. In: van der Poorten, A.J., Stein, A. (eds.) ANTS 2008. LNCS, vol. 5011, pp. 167–179. Springer, Heidelberg (2008)

    Google Scholar 

  8. Friedgut, E.: Sharp thresholds of graph properties, and the k-SAT problem. J. Amer. Math. Soc. 12, 1017–1054 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Granville, A., Soundararajan, K.: Large Character Sums. J. Amer. Math. Soc. 14, 365–397 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hildebrand, A., Tenenbaum, G.: On integers free of large prime factors. Trans. Amer. Math. Soc. 296, 265–290 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Leroux, P.: Enumerative problems inspired by Mayer’s theory of cluster integrals. Electronic Journal of Combinatorics. Paper R32, May 14 (2004)

    Google Scholar 

  12. Leyland, P., Lenstra, A., Dodson, B., Muffett, A., Wagstaff, S.: MPQS with three large primes. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 446–460. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Lenstra, A.K., Manasse, M.S.: Factoring with two large primes. Math. Comp. 63, 785–798 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pomerance, C.: The quadratic sieve factoring algorithm. Advances in Cryptology, Paris, pp. 169–182 (1984)

    Google Scholar 

  15. Pomerance, C.: The number field sieve. In: Gautschi, W. (ed.) Mathematics of Computation 1943–1993: a half century of computational mathematics. Proc. Symp. Appl. Math. 48, pp. 465–480. Amer. Math. Soc., Providence (1994)

    Google Scholar 

  16. Pomerance, C.: The role of smooth numbers in number theoretic algorithms. In: Proc. International Congress of Mathematicians (Zurich, 1994), Birhäuser, vol. 1, pp. 411–422 (1995)

    Google Scholar 

  17. Pomerance, C.: Multiplicative independence for random integers. In: Berndt, B.C., Diamond, H.G., Hildebrand, A.J. (eds.) Analytic Number Theory: Proc. Conf. in Honor of Heini Halberstam, Birhäuser, vol. 2, pp. 703–711 (1996)

    Google Scholar 

  18. Pomerance, C.: Smooth numbers and the quadratic sieve. In: Buhler, J.P., Stevenhagen, P. (eds.) Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, Mathematical Sciences Research Institute Publications 44 (to appear, 2007)

    Google Scholar 

  19. Silverman, R.: The multiple polynomial quadratic sieve. Math. Comp. 48, 329–339 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tenenbaum, G.: Introduction to the analytic and probabilistic theory of numbers. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfred J. van der Poorten Andreas Stein

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Croot, E., Granville, A., Pemantle, R., Tetali, P. (2008). Running Time Predictions for Factoring Algorithms. In: van der Poorten, A.J., Stein, A. (eds) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol 5011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79456-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79456-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79455-4

  • Online ISBN: 978-3-540-79456-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics