Skip to main content

A General Global Learning Model: MEMPM

  • Chapter
  • 6161 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Traditional global learning, especially generative learning, enjoys a long and distinguished history, holding a lot of merits, e.g. a relatively simple optimization, and the flexibility in incorporating global information such as structure information and invariance, etc. However, it is widely argued that this model lacks the generality for having to assume a specific model beforehand. Assuming a specific model over data is useful in some cases. However, the assumption may not always coincide with the true data distribution in general and thus may be invalid in many circumstances. In this chapter, we propose a novel global learning model, named Minimum Error Minimax Probability Machine (MEMPM), which is directly motivated from Marshall and OlKin Probability Theory [20, 24]. For classifying data correctly, this model focuses on estimating the worse-case probability, which is not only more reliable, but also more importantly provides no need for assuming specific models. Furthermore, this new model consists of several appealing features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazaraa MS (1993) Nonlinear Programming: Theory and Algorithms. New York, NY: John Wiley & Sons, 2nd edition

    MATH  Google Scholar 

  2. Bertsekas DP (1999) Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, 2nd edition

    Google Scholar 

  3. Blake CL, Merz CJ(1998) Repository of machine learning databases, University of California, Irvine, http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  4. Breiman L(1997) Arcing Classifiers. Technical Report 460, Statistics Department, University of California

    Google Scholar 

  5. Chow YS, Teicher H(1997) Probability Theory: Independence, Interchangeability, Martingales. New York, NY: Springer-Verlag, 3rd edition

    MATH  Google Scholar 

  6. Craven BD (1978) Mathematical Programming and Control Theory. London, UK: Chapman & Hall

    MATH  Google Scholar 

  7. Craven BD (1988) Fractional Programming, Sigma Series in Applied Mathematics 4. Berlin: Heldermann Verlag

    Google Scholar 

  8. Deco G, Obradovic D (1996) An Information-theoretic Approach to Neural Computing. Heidelberg; New York: Springer-Verlag

    MATH  Google Scholar 

  9. Dori D, Liu W (1999) Sparse pixel vectorization: An algorithm and its performance evaluation. IEEE Trans. Pattern Analysis and Machine Intelligence 21: 202–215

    Article  Google Scholar 

  10. Grzymala-Busse JW, Goodwin LK, Zhang X (2003) Increasing sensitivity of preterm birth by changing rule strengths. Pattern Recognition Letters 24: 903–910

    Article  Google Scholar 

  11. Huang K, Yang H, King I, Lyu MR (2004) Learning large margin classifiers locally and globally. In The 21st International Conference on Machine Learning (ICML-2004)

    Google Scholar 

  12. Huang K, Yang H, King I, Lyu MR, Chan L (2003) Biased minimax probability machine for medical diagnosis. In the Eighth International Symposium on Artificial Intelligence and Mathematics

    Google Scholar 

  13. Ibaraki T (1981). Solving mathematical programming problems with fractional objective functions In S. Schaible and W.T. Ziemba., editors, Generalized Concavity in Optimization and Economics. New York, NY: Academic Press 441–472

    Google Scholar 

  14. Keysers D, Och FJ, Ney H(2002) Maximum entropy and Gaussian models for image object recognition. In Proceedings of the 24th DAGM Symposium, Lecture Notes in Computer Science. Heidelberg: Springer-Verlag, LNCS 2449: 498–506

    Google Scholar 

  15. Lanckriet GRG, Ghaoui LE, Bhattacharyya C, Jordan MI (2001) Minimax probability machine. In Advances in Neural Information Processing Systems (NIPS)

    Google Scholar 

  16. Lanckriet GRG, Ghaoui LE, Bhattacharyya C, Jordan MI (2002) A robust minimax approach to classification. Journal of Machine Learning Research 3: 555–582

    Article  Google Scholar 

  17. Liu W, Dori D (1997) A protocol for performance evaluation of line detection algorithms. Machine Vision and Application 9: 240–250

    Article  Google Scholar 

  18. Maloof MA, Langley P, Binford TO, Nevatia R, Sage S (2003) Improved rooftop detection in aerial images with machine learning. Machine Learning 53: 157–191

    Article  Google Scholar 

  19. Mangasarian Olvi L (1994) Nonlinear Programming. Philadelphia: Society for Industrial and Applied Mathematics

    MATH  Google Scholar 

  20. Marshall AW, Olkin I (1960) Multivariate Chebyshev inequalities. Annals of Mathematical Statistics 31(4): 1001–1014

    Article  MATH  MathSciNet  Google Scholar 

  21. Moulin Hervé (1995) Cooperative Microeconomics: a game-theoretic introduction. Princeton, NJ: Princeton University Press

    Google Scholar 

  22. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to Kernel-based Learning Algorithms. IEEE Transactions on Neural Networks 12: 181–201

    Article  Google Scholar 

  23. Osuna E, Freund R, Girosi F (1997) Support Vector Machines: Training and Applications. Technical Report AIM-1602, Cambridge, MA: The MIT Press

    Google Scholar 

  24. Popescu I, Bertsimas D (2001) Optimal inequalities in probability theory: A convex optimization approach. Technical Report TM62, INSEAD

    Google Scholar 

  25. Schaible S (1977) Fractional programming. Zeitschrift für Operational Research, Serie A 27(1): 39–54

    Article  MathSciNet  Google Scholar 

  26. Schaible S (1995) Fractional programming. In R. Horst and P. M. Pardalos, editors, Handbook of Global Optimization, Nonconvex Optimization and its Applications. Dordrecht, Boston, London: Kluwer Academic Publishers 495–608

    Google Scholar 

  27. Schölkopf B, Smola A(2002) Learning with Kernels. Cambridge, MA: The MIT Press

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2008). A General Global Learning Model: MEMPM. In: Machine Learning. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79452-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79452-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79451-6

  • Online ISBN: 978-3-540-79452-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics