Advertisement

Bagging Multiple Comparisons from Microarray Data

  • Dimitris N. Politis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)

Abstract

Bagging and subagging procedures are put forth with the purpose of improving the discovery power in the context of large-scale simultaneous hypothesis testing. Bagging and subagging significantly improve discovery power at the cost of a small increase in false discovery rate with ‘maximum contrast’ subagging having an edge over bagging, i.e., yielding similar power but significantly smaller false discovery rates. The proposed procedures are implemented in a situation involving a well known dataset on gene expressions related to prostate cancer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc., Ser. B 57, 289–300 (1995)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bühlmann, P.: Bagging, subagging and bragging for improving some prediction algorithms. In: Akritas, M.G., Politis, D.N. (eds.) Recent Advances and Trends in Nonparametric Statistics, North Holland, pp. 19–34. Elsevier, Amsterdam (2003)CrossRefGoogle Scholar
  4. 4.
    Bühlmann, P., Yu, B.: Analyzing bagging. Ann. Statist. 30, 927–961 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Dettling, M.: BagBoosting for tumor classification with gene expression data. Bioinformatics 20(18), 3583–3593 (2004)CrossRefGoogle Scholar
  6. 6.
    Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9), 1090–1099 (2003)CrossRefGoogle Scholar
  7. 7.
    Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Amer. Statist. Assoc. 97(457), 77–87 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Efron, B.: Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1–26 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Efron, B.: Local false discovery rates (2005), http://www-stat.stanford.edu/~brad/papers
  10. 10.
    Efron, B.: Size, power, and false discovery rates (2006), http://www-stat.stanford.edu/~brad/papers
  11. 11.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York (1993)zbMATHGoogle Scholar
  12. 12.
    Ge, Y., Dudoit, S., Speed, T.: Resampling-based multiple testing for microarray data analysis. Test 12(1), 1–77 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Miller, R.G.: Simultaneous Statistical Inference, 2nd edn. Springer, New York (1981)zbMATHGoogle Scholar
  14. 14.
    Newton, M.A., Noueiry, A., Sarkar, D., Ahlquist, P.: Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostat. 5, 155–176 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Politis, D.N., Romano, J.P., Wolf, M.: Subsampling. Springer, New York (1999)zbMATHGoogle Scholar
  16. 16.
    Romano, J.P., Wolf, M.: Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association 100, 94–108 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Shao, J., Wu, C.F.: A general theory of jackknife variance estimation. Ann. Statist. 17, 1176–1197 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)CrossRefGoogle Scholar
  19. 19.
    Tukey, J.W.: Bias and confidence in not quite large samples (Abstract). Ann. Math. Statist. 29, 614 (1958)CrossRefGoogle Scholar
  20. 20.
    Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98, 5116–5121 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Westfall, P., Young, S.: Resampling-based multiple testing: Examples and methods for p-value adjustment. Wiley, New York (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dimitris N. Politis
    • 1
  1. 1.Department of MathematicsUniversity of California at San DiegoLa JollaUSA

Personalised recommendations