BioDQ: Data Quality Estimation and Management for Genomics Databases

  • Alexandra Martinez
  • Joachim Hammer
  • Sanjay Ranka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)


We present BIODQ, a model for estimating and managing the quality of biological data in genomics repositories. BIODQ uses our Quality Estimation Model (QEM) which has been implemented as part of the Quality Management Architecture (QMA). The QEM consists of a set of quality dimensions and their quantitative measures. The QMA combines a series of software components that enable the integration of QEM with existing genomics repositories. The basis of our experimental evaluation is a research study conducted among biologists. Evaluation results show that the QEM dimensions and estimations are biologically-relevant and useful for discriminating high quality from low quality data. The most relevant capabilities of the QMA are also presented.


Data Quality Genomics Databases GenBank RefSeq quality dimension measure estimation management classification architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. Nucleic Acids Res. 35(Database issue), D21–D25 (2007)Google Scholar
  2. 2.
    Pruitt, K.D., Tatusova, T., Maglott, D.: NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35(Database issue), D61–D65 (2007)Google Scholar
  3. 3.
    Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31(1), 365–370 (2003)CrossRefGoogle Scholar
  4. 4.
    Wheeler, D.L., Barret, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S., Geer, L.Y., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D.J., Madden, T.L., Maglott, D.R., Ostell, J., Miller, V., Pruitt, K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusov, R.L., Tatusova, T.A., Wagner, L., Yaschenko, E.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 35(Database issue), D5–D12 (2007)Google Scholar
  5. 5.
    Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: A Methodology for Information Quality Assessment. Information and Management 40(2), 133–146 (2002)CrossRefGoogle Scholar
  6. 6.
    Naumann, F., Rolker, C.: Assessment Methods for Information Quality Criteria. In: Proceedings of the International Conference on Information Quality, pp. 148–162 (2000)Google Scholar
  7. 7.
    Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., Batini, C.: Managing Data Quality in Cooperative Information Systems. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 208–232. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Scannapieco, M., Virgillito, A., Marchetti, M., Mecella, M., Baldoni, R.: The DaQuinCIS Architecture: A Platform for Exchanging and Improving Data Quality in Cooperative Information Systems. Information Systems 29(7), 551–582 (2004)CrossRefGoogle Scholar
  9. 9.
    Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information sources. Information Systems 29(7), 583–615 (2004)CrossRefGoogle Scholar
  10. 10.
    Müller, H., Naumann, F., Freytag, J.C.: Data Quality in Genome Databases. In: Proceedings of the International Conference on Information Quality, pp. 269–284 (2003)Google Scholar
  11. 11.
    Schmutz, J., Wheeler, J., Grimwood, J., Dickson, M., Yang, J., Caoile, C., Bajorek, E., Black, S., Chan, Y.M., Denys, M., Escobar, J., Flowers, D., Fotopulos, D., Garcia, C., Gomez, M., Gonzales, E., Haydu, L., Lopez, F., Ramirez, L., Retterer, J., Rodriguez, A., Rogers, S., Salazar, A., Tsai, M., Myers, R.M.: Quality assessment of the human genome sequence. Nature 429(6990), 365–368 (2004)CrossRefGoogle Scholar
  12. 12.
    Missier, P., Embury, S., Greenwood, M., Preece, A., Jin, B.: Quality views: Capturing and exploiting the user perspective on data quality. In: Proceedings of the VLDB, pp. 977–988 (2006)Google Scholar
  13. 13.
    Preece, A.D., Jin, B., Pignotti, E., Missier, P., Embury, S.M., Stead, D., Brown, A.: Managing Information Quality in e-Science Using Semantic Web Technology. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 472–486. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann Publishers, San Francisco, CA (2000)Google Scholar
  15. 15.
  16. 16.
    Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 (October 2000),
  17. 17.
    INSDC Feature Table Definition Document,
  18. 18.
    International Nucleotide Sequence Database Collaboration,
  19. 19.
    Martinez, A., Hammer, J.: BIODQ: A Model for Data Quality Estimation and Management in Biological Databases. Doctoral Thesis, University of Florida (2007)Google Scholar
  20. 20.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexandra Martinez
    • 1
  • Joachim Hammer
    • 1
  • Sanjay Ranka
    • 1
  1. 1.Dept of Computer & Information Science & EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations