Skip to main content

Incorporating Knowledge of Topology Improves Reconstruction of Interaction Networks from Microarray Data

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Included in the following conference series:

  • 943 Accesses

Abstract

Reconstruction of biological interaction networks from high-throughput experimental data is one of the most challenging problems in bioinformatics. These networks have specific topologies, whose characteristics are defined by evolutionary relationships between proteins and the physical limitations imposed on proteins interacting in three-dimensional space. In this study, a method is proposed applying the topology of known biological networks to the analysis of microarray data for protein-protein binding interactions. In this method, genomic biological networks are derived from the body of published scientific literature. The numbers of interacting neighbors for proteins of specific molecular functions are observed. That information is used in the analysis of microarray expression data to regenerate biological networks using a rank-based algorithm, Gene Ontology Restricted Value Neighborhood (GRV-N). The results of this analysis demonstrate that incorporating knowledge of network topology improves the ability of expression analysis to reconstruct interaction networks with a high degree of biological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stuart, J.M., et al.: A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules. Science 302(5643), 249–255 (2003)

    Article  Google Scholar 

  2. Zhang, B., Horvath, S., General Framework, A.: for Weighted Gene Co-Expression Network Analysis. Statistical Applications in Genetics and Molecular Biology 4(1), 17 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ghazalpour, A., et al.: Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight. PLoS Genetics 2(8), 130 (2006)

    Article  Google Scholar 

  4. Barabasi, A.L., Bonabeau, E.: Scale-free Networks. Sci. Am. 288, 60 (2003)

    Article  Google Scholar 

  5. Farkas, I., et al.: The Topology of the Transcription Regulatory Network in the Yeast, Saccharomyces cerevisiae. Physica A-Statistical Mechanics And Its Applications 318(3–4), 601–612 (2003)

    Article  MathSciNet  Google Scholar 

  6. Albert, R., Barabási, A.L.: Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  7. Chen, G., et al.: Rank-Based Edge Reconstruction for Scale-Free Genetic Regulatory Networks. BMC Bioinformatics 9, 75 (2008)

    Article  Google Scholar 

  8. Agrawal, H.: Extreme Self-Organization in Networks Constructed from Gene Expression Data. Physical Review Letters 89(26), 268702 (2002)

    Article  Google Scholar 

  9. GO Slim Mapper, http://db.yeastgenome.org/cgi-bin/GO/goTermMapper

  10. Nikitin, A., et al.: Pathway Studio–the Analysis and Navigation of Molecular Networks. Bioinformatics 19(16), 2155–2157 (2003)

    Article  Google Scholar 

  11. Gene Ontology Consortium, The Gene Ontology (GO) Project in 2006. Nucl. Acids Res. 34(suppl. 1), 322–326 (2006)

    Google Scholar 

  12. Spellman, P.T., et al.: Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    Google Scholar 

  13. Larsen, P., et al.: A Statistical Method to Incorporate Biological Knowledge for Generating Testable Novel Gene Regulatory Interactions from Microarray Experiments. BMC Bioinformatics 8, 317 (2007)

    Article  Google Scholar 

  14. Liu, Y., et al.: Flap Endonuclease 1: A Central Component of DNA Metabolism. Annu. Rev. Biochem. 73, 589–615 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larsen, P., Almasri, E., Chen, G., Dai, Y. (2008). Incorporating Knowledge of Topology Improves Reconstruction of Interaction Networks from Microarray Data. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics