A Distance-Based Method for Detecting Horizontal Gene Transfer in Whole Genomes

  • Xintao Wei
  • Lenore Cowen
  • Carla Brodley
  • Arthur Brady
  • D. Sculley
  • Donna K. Slonim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)


As the number of sequenced genomes has grown, we have become increasingly aware of the impact of horizontal gene transfer on our understanding of genome evolution. Methods for detecting horizontal gene transfer from sequence abound. Among the most accurate are methods based on phylogenetic tree inference, but even these can perform poorly in some cases, such as when multiple trees fit the data equally well. In addition, they tend to be computationally intensive, making them poorly suited to genomic-scale applications. We introduce a new method for detecting horizontal transfer that incorporates the distances typically used by phylogeny-based methods, rather than the trees themselves. We demonstrate that the distance method is scalable and that it performs well precisely in cases where phylogenetic approaches struggle. We conclude that a distance-based approach may be a valuable addition to the set of tools currently available for identifying horizontal gene transfer.


Horizontal Gene Transfer Distance Method Yersinia Pestis Xylella Fastidiosa Horizontal Gene Transfer Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic. Acids. Res. 25(17), 3389–3402 (1997)CrossRefGoogle Scholar
  2. Anderson, F.E., Swofford, D.L.: Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol. 33(2), 440–451 (2004)CrossRefGoogle Scholar
  3. Charbit, A., Autret, N.: Horizontal transfer of chromosomal DNA between the marine bacterium Vibrio furnissii and Escherichia coli revealed by sequence analysis. Microb. Comp. Genomics 3(2), 119–132 (1998)Google Scholar
  4. Coenye, T., Vandamme, P.: Organisation of the S10, spc and alpha ribosomal protein gene clusters in prokaryotic genomes. FEMS Microbiol. Lett. 242(1), 117–126 (2005)CrossRefGoogle Scholar
  5. Davies, J.: Origins and evolution of antibiotic resistance. Microbiologia 12(1), 9–16 (1996)Google Scholar
  6. Doolittle, W.F.: You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14(8), 307–311 (1998)CrossRefGoogle Scholar
  7. Doolittle, W.F.: Lateral genomics. Trends. Cell. Biol. 9(12), 5–8 (1999)CrossRefGoogle Scholar
  8. Eisen, J.A.: Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev. 10(6), 606–611 (2000)CrossRefGoogle Scholar
  9. Felsenstein, J.: PHYLIP (Phylogeny Inference Package), version 3.66. Department of Genetics, University of Washington, Seattle, Washington (2002)Google Scholar
  10. Hotopp, J.C., Clark, M.E., Oliveira, D.C., Foster, J.M., Fischer, P., Torres, M.C., Giebel, J.D., Kumar, N., Ishmael, N., Wang, S., et al.: Widespread lateral gene transfer from intra-cellular bacteria to multicellular eukaryotes. Widespread lateral gene transfer from intra-cellular bacteria to multicellular eukaryotes 317(5845), 1753–1756 (2007)Google Scholar
  11. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al.: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)CrossRefGoogle Scholar
  12. Lawrence, J.G., Ochman, H.: Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44(4), 383–397 (1997)CrossRefGoogle Scholar
  13. Lerat, E., Daubin, V., Moran, N.A.: From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria. PLoS Biol. 1(1), 19 (2003)CrossRefGoogle Scholar
  14. Ly, A., Henderson, J., Lu, A., Culham, D.E., Wood, J.M.: Osmoregulatory systems of Escherichia coli: identification of betaine-carnitine-choline transporter family member BetU and distributions of betU and trkG among pathogenic and nonpathogenic isolates. J. Bacteriol. 186(2), 296–306 (2004)CrossRefGoogle Scholar
  15. Martin, W.: Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays 21(2), 99–104 (1999)CrossRefGoogle Scholar
  16. Moya, A., Latorre, A., Sabater-Munoz, B., Silva, F.J.: Comparative molecular evolution of primary (Buchnera) and secondary symbionts of aphids based on two protein-coding genes. J. Mol. Evol. 55(2), 127–137 (2002)CrossRefGoogle Scholar
  17. Mrazek, J., Karlin, S.: Detecting alien genes in bacterial genomes. Ann. N. Y. Acad. Sci. 870, 314–329 (1999)CrossRefGoogle Scholar
  18. Planet, P.J.: Tree disagreement: measuring and testing incongruence in phylogenies. J. Biomed. Inform. 39(1), 86–102 (2006)CrossRefGoogle Scholar
  19. Podell, S., Gaasterland, T.: DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 8(2), 16 (2007)CrossRefGoogle Scholar
  20. Poptsova, M.S., Gogarten, J.P.: The power of phylogenetic approaches to detect horizontally transferred genes. BMC Evol. Biol. 7, 45 (2007)CrossRefGoogle Scholar
  21. Remm, M., Storm, C.E., Sonnhammer, E.L.: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314(5), 1041–1052 (2001)CrossRefGoogle Scholar
  22. Ren, C.P., Beatson, S.A., Parkhill, J., Pallen, M.J.: The Flag-2 locus, an ancestral gene cluster, is potentially associated with a novel flagellar system from Escherichia coli. J. Bacteriol. 187(4), 1430–1440 (2005)CrossRefGoogle Scholar
  23. Robinson, D.: Comparison of phylogenetic trees. Mathematical Biosciences 53, 131–147 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  24. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)Google Scholar
  25. Salzberg, S.L., White, O., Peterson, J., Eisen, J.A.: Microbial genes in the human genome: lateral transfer or gene loss? Science 292(5523), 1903–1906 (2001)CrossRefGoogle Scholar
  26. Schaffer, A.A., Aravind, L., Madden, T.L., Shavirin, S., Spouge, J.L., Wolf, Y.I., Koonin, E.V., Altschul, S.F.: Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic. Acids. Res. 29(14), 2994–3005 (2001)CrossRefGoogle Scholar
  27. Shimodaira, H.: An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51(3), 492–508 (2002)CrossRefGoogle Scholar
  28. Spaulding, A.W., von Dohlen, C.D.: Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). Mol. Biol. Evol. 15(11), 1506–1513 (1998)Google Scholar
  29. Sprenger, G.A.: Two open reading frames adjacent to the Escherichia coli K-12 tran-sketolase (tkt) gene show high similarity to the mannitol phosphotransferase system en-zymes from Escherichia coli and various gram-positive bacteria. Biochim. Biophys. Acta. 1158(1), 103–106 (1993)Google Scholar
  30. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res. 22(22), 4673–4680 (1994)CrossRefGoogle Scholar
  31. van Ham, R.C., Moya, A., Latorre, A.: Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids). J. Bacteriol. 179(15), 4768–4777 (1997)Google Scholar
  32. Warwick, S.I., Legere, A., Simard, M.J., James, T.: Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol. Ecol. (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xintao Wei
    • 1
  • Lenore Cowen
    • 1
  • Carla Brodley
    • 1
  • Arthur Brady
    • 1
  • D. Sculley
    • 1
  • Donna K. Slonim
    • 1
    • 2
  1. 1.Department of Computer ScienceTufts UniversityMedford 
  2. 2.Department of PathologyTufts University School of MedicineBoston

Personalised recommendations