Accurate Inverse Consistent Non-rigid Image Registration and Its Application on Automatic Re-contouring

  • Qingguo Zeng
  • Yunmei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)


This paper provides a novel algorithm for invertible non- rigid image registration. The proposed model minimizes two energy functionals coupled by a natural inverse consistent constraint. Both of the energy functionals for forward and backward deformation fields consist a smoothness measure of the deformation field, and a similarity measure between the deformed image and the one to be matched. In this proposed model the similarity measure is based on maximum likelihood estimation of the residue image. To enhance algorithm efficiency, the Additive Operator Splitting (AOS) scheme is used in solving the minimization problem. The inverse consistent deformation field can be applied to automatic re-contouring to get an accurate delineation of Regions Of Interest(ROIs). The experimental results on synthetic images and 3D prostate data indicate the effectiveness of the proposed method in inverse consistency and automatic re-contouring.


Image Registration Target Image Dissimilarity Measure Synthetic Image Energy Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing 46(1), 1–21 (1989)CrossRefGoogle Scholar
  2. 2.
    Beg, M.F., Khan, A.: Symmetric data attachment terms for large deformation image registration. MedImg 26(9), 1179–1189 (2007)Google Scholar
  3. 3.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Transactions on Medical Imaging 20, 568–582 (2001)CrossRefGoogle Scholar
  4. 4.
    Collins, D.L., Evans, A.C.: Animal: Validation and applications of nonlinear registration-based segmentation. IJPRAI 11(8), 1271–1294 (1997)Google Scholar
  5. 5.
    Schreibmann, E., Xing, L.: Narrow band deformable registration of prostate magnetic resonance imaging, magnetic resonance spectroscopic imaging, and computed tomography studies. Int. J. Radiat. Oncol. Biol. Phys. 62, 595–605 (2005)Google Scholar
  6. 6.
    Hermosillo, G., Hotel, C.C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Computer Vision 50(3), 329–343 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Hill, D., Batchelor, P., Holden, M., Hawkes, D.: Topical review: Medical image registration. Physics in Medicine and Biology 46, 1–45 (2001)CrossRefGoogle Scholar
  8. 8.
    Jian, B., Vemuri, B., Marroquín, J.: Robust nonrigid multimodal image registration using local frequency maps. In: 19th International Conference on Information Processing in Medical Imaging, pp. 504–515 (2005)Google Scholar
  9. 9.
    Weickert, J., Romeny, B., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. on Img. Proc. 7(3), 398–410 (1998)CrossRefGoogle Scholar
  10. 10.
    Brock, K.K., Sharpe, M.B., Dawson, L.A., Kim, S.M., Jaffray, D.A.: Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32, 1647–1659 (2005)CrossRefGoogle Scholar
  11. 11.
    Keall, P.J., Siebers, J.V., Joshi, S., Mohan, R.: Monte carlo as a four-dimensional radiotherapy treatment-planning tool to account for respiratory motion. Phys. Med. Biol. 49, 3639–3648 (2004)CrossRefGoogle Scholar
  12. 12.
    Leow, A.D., Huang, S.C., Geng, A., Becker, J., Davis, S., Toga, A., Thompson, P.: Inverse consistent mapping in 3d deformable image registration: Its construction and statistical properties. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 493–503. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Lu, T., Neittaanmki, P., Tai, X.-C.: A parallel splitting-up method for partial differential equations and its application to navier-stokes equations. RAIRO Math. Model. and Numer. Anal. 26(6), 673–708 (1992)zbMATHGoogle Scholar
  14. 14.
    Lu, W., Chen, M., Olivera, G., Ruchala, K., Mackie, T.: Fast free-form deformable registration via calculus of variations. Physics in Medicine and Biology 49, 3067–3087 (2004)CrossRefGoogle Scholar
  15. 15.
    Lu, W., Olivera, G., Mackie, T.R.: Motion-encoded dose calculation through fluence/sinogram modification. Med. Phys. 32, 118–127 (2005)CrossRefGoogle Scholar
  16. 16.
    Lu, W., Olivera, G.H., Chen, Q., Chen, M., Ruchala, K.: Automatic re-contouring in 4d radiotherapy. Physics in Medicine and Biology 51, 1077–1099 (2006)CrossRefGoogle Scholar
  17. 17.
    Coselmon, M.M., Balter, J.M., McShan, D.L., Kessler, M.L.: Mutual information based ct registration of the lung at exhale and inhale breathing states using thin-plate splines. Med. Phys. 31, 2942–2948 (2004)CrossRefGoogle Scholar
  18. 18.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration maximization of mutual information. In: MMBIA 1996: Proceedings of the 1996 Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 1996), Washington, DC, USA, p. 14. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  19. 19.
    Rogelj, P., Kovacic, S.: Similarity measures for non-rigid registration. In: Proc. SPIE, vol. 4322, pp. 569–578 (2001)Google Scholar
  20. 20.
    Thirion, J.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical image analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  21. 21.
    Viola, P.A., Wells III, W.M.: Alignment by maximization of mutual information. In: ICCV, pp. 16–23 (1995)Google Scholar
  22. 22.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: A survey. IEEE Trans. Med. Imaging 22, 986–1004 (2003)CrossRefGoogle Scholar
  23. 23.
    Wang, H., Dong, L., O’Daniel, J., Mohan, R., Garden, A., Ang, K., Kuban, D., Bonnen, M., Chang, J., Cheung, R.: Validation of an accelerated ’demons’ algorithm for deformable image registration in radiation therapy. Phys. Med. Biol. 50(12), 2887–2905 (2005)CrossRefGoogle Scholar
  24. 24.
    Zitova, B., Flusser, J.: Image registration methods: A survey. Image Vis. comput. 21, 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Qingguo Zeng
    • 1
  • Yunmei Chen
    • 1
  1. 1.Department of MathematicsUniversity of FloridaGainesville

Personalised recommendations