Skip to main content

Sparse Decomposition of Gene Expression Data to Infer Transcriptional Modules Guided by Motif Information

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Included in the following conference series:

  • 960 Accesses

Abstract

An important topic in computational biology is to identify transcriptional modules through sequence analysis and gene expression profiling. A transcriptional module is formed by a group of genes under control of one or several transcription factors (TFs) that bind to cis-regulatory elements in the promoter regions of those genes. In this paper, we develop an integrative approach, namely motif-guided sparse decomposition (mSD), to uncover transcriptional modules by combining motif information and gene expression data. The method exploits the interplay of co-expression and co-regulation to find regulated gene patterns guided by TF binding information. Specifically, a motif-guided clustering method is first developed to estimate transcription factor binding activities (TFBAs); sparse component analysis is then followed to further identify TFs’ target genes. The experimental results show that the mSD approach can successfully help uncover condition-specific transcriptional modules that may have important implications in endocrine therapy of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Speed, T.: Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC (2003)

    Google Scholar 

  2. Nguyen, D.H., D’Haeseleer, P.: Deciphering principles of transcription regulation in eukaryotic genomes. Mol. Syst. Biol. 2 (2006)

    Google Scholar 

  3. Roth, F.P., et al.: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotech 16(10), 939–945 (1998)

    Article  Google Scholar 

  4. Jin, V.X., et al.: A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data–A case study using E2F1. Genome Res. 16(12), 1585–1595 (2006)

    Article  Google Scholar 

  5. Smith, A.D., et al.: Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics 21(suppl. 1), 403–412 (2005)

    Article  Google Scholar 

  6. Liao, J.C., et al.: Network component analysis: Reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences 100(26), 15522–15527 (2003)

    Article  Google Scholar 

  7. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. Neural Networks, IEEE Transactions 16(4), 992–996 (2005)

    Article  Google Scholar 

  8. Schacherer, F., et al.: TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Research 28, 316–319 (2000)

    Article  Google Scholar 

  9. Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. App. Statist. 28, 100–108 (1978)

    Article  Google Scholar 

  10. Kohonen, T.: Self-Organizing Maps. Springer, NY (1997)

    MATH  Google Scholar 

  11. Frey, B.J., Dueck, D.: Clustering by Passing Messages Between Data Points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  12. Arash Ali, A., Massoud, B.-Z., Christian, J.: A Fast Method for Sparse Component Analysis Based on Iterative Detection-Estimation. In: AIP Conference Proceedings, vol. 872(1), pp. 123–130 (2006)

    Google Scholar 

  13. Lin, C.-Y., et al.: Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biology 5(9), R66 (2004)

    Article  Google Scholar 

  14. Tang, S., et al.: Computational method for discovery of estrogen responsive genes. Nucl. Acids Res. 32(21), 6212–6217 (2004)

    Article  Google Scholar 

  15. Carroll, J.S., et al.: Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38(11), 1289–1297 (2006)

    Article  Google Scholar 

  16. Halees, A.S., Leyfer, D., Weng, Z.: PromoSer: A large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res. 31(13), 3554–3559 (2003)

    Article  Google Scholar 

  17. Kel, A.E., et al.: MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 31(13), 3576–3579 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gong, T. et al. (2008). Sparse Decomposition of Gene Expression Data to Infer Transcriptional Modules Guided by Motif Information. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics