Advertisement

A Graph-Theoretic Method for Mining Overlapping Functional Modules in Protein Interaction Networks

  • Min Li
  • Jianxin Wang
  • Jianer Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)

Abstract

Identification of functional modules in large protein interaction networks is crucial to understand principles of cellular organization, processes and functions. As a protein can perform different functions, functional modules overlap with each other. In this paper, we presented a new algorithm OMFinder for mining overlapping functional modules in protein interaction networks by using graph split and reduction. We applied algorithm OMFinder to the core protein interaction network of budding yeast collected from DIP database. The experimental results showed that algorithm OMFinder detected many significant overlapping functional modules with various topologies. The significances of identified modules were evaluated by using functional categories from MIPS database. Most importantly, our algorithm had very low discard rate compared to other approaches of detecting overlapping modules.

Keywords

protein interaction network functional module graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein-protein interaction networks. ISMB/ECCB 23, 29–40 (2007)Google Scholar
  2. 2.
    Hartwell, L.H., et al.: From molecular to modular cell biology. Nature 402, 47–52 (1999)CrossRefGoogle Scholar
  3. 3.
    Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Res. 5, 101–114 (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, J.C., Yuan, B.: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22, 2283–2290 (2006)CrossRefGoogle Scholar
  5. 5.
    Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. 100, 1128–1133 (2003)CrossRefGoogle Scholar
  6. 6.
    Luo, F., et al.: Modular organization of protein interaction networks. Bioinformatics 23, 207–214 (2007)CrossRefGoogle Scholar
  7. 7.
    King, A.D., Prz̆ulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004)Google Scholar
  8. 8.
    Hartuv, E., Shamir, R.: A clustering algorithm based graph connectivity. Information Processing Letters, 175–181 (2000)Google Scholar
  9. 9.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pereira-Leal, J.B., et al.: Detection of functional modules from protein interaction networks. Proteins: Struct. Func. Bioinformatics 54, 49–57 (2004)CrossRefGoogle Scholar
  11. 11.
    Arnau, V., et al.: Iterative cluster analysis of protein interaction data. Bioinformatics 21, 364–378 (2005)CrossRefGoogle Scholar
  12. 12.
    Adamcsek, B., Palla, G., Farkas, I., Derenyi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006)CrossRefGoogle Scholar
  13. 13.
    Cho, Y.R., Hwang, W., Ramanathan, M., Zhang, A.: Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics, 8–265 (2007)Google Scholar
  14. 14.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci., 12123–12128 (2003)Google Scholar
  15. 15.
    Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1) (2003)Google Scholar
  16. 16.
    Altaf-Ul-Amin, M., et al.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 7(207) (2006)Google Scholar
  17. 17.
    Pei, P., Zhang, A.: A seed-refine algorithm for detecting protein complexes from protein interaction data. IEEE Transactions on Nanobioscience 6, 43–50 (2007)CrossRefGoogle Scholar
  18. 18.
    Palla, G., et al.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  19. 19.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  20. 20.
    Jeong, H., Mason, S., Barabási, A., Oltvai, Z.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRefGoogle Scholar
  21. 21.
    Yook, S., Oltvai, Z., Barabasi, A.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRefGoogle Scholar
  22. 22.
    Prz̆ulj, N., Wigle, D.A., Jurisica,I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)Google Scholar
  23. 23.
    Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving functional modularity in potein-protein interactions graphs using Hub-induced subgraphs. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Mewes, H.W., et al.: MIPS: analysis and annotation of proteins from whole genome in 2005. Nucleic Acid Research 34, 169–172 (2006)CrossRefGoogle Scholar
  25. 25.
    Ruepp, A., et al.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acid Research 32, 5539–5545 (2004)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Hwang, W., Cho, Y.R., Zhang, A., Ramanathan, M.: A novel functional module detection algorithm for protein- protein interaction networks. Algorithms for Molecular Biology 12, 1–24 (2006)Google Scholar
  28. 28.
    Cho, Y.R., Hwang, W., Zhang, A.: Identification of overlapping functional modules in protein interaction networks: information flow-based approach. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Min Li
    • 1
  • Jianxin Wang
    • 1
  • Jianer Chen
    • 1
    • 2
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaP.R. China
  2. 2.Department of Computer ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations