Advertisement

PFP: A Computational Framework for Phylogenetic Footprinting in Prokaryotic Genomes

  • Dongsheng Che
  • Guojun Li
  • Shane T. Jensen
  • Jun S. Liu
  • Ying Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)

Abstract

Phylogenetic footprinting is a widely used approach for the prediction of transcription factor binding sites (TFBSs) through identification of conserved motifs in the upstream sequences of orthologous genes in eukaryotic genomes. However, this popular strategy may not be directly applicable to prokaryotic genomes, where typically about half of the genes in a genome form multiple-gene transcription units or operons. The promoter sequences for these operons are located in the inter-operonic rather than inter-genic regions, which require prediction of TFBSs at the transcriptional unit instead of individual gene level. We have formulated as a bipartite graph matching problem the identification of conserved operons (including both single-gene and multi-gene operons) whose individual gene members are orthologous between two genomes and present a graph-theoretic solution. By applying this method to Escherichia coli K12 and 11 of its phylogeneticly neighboring species, we have predicted 2,478 sets of conserved operons, and discovered potential binding motifs for each of these operons. By comparing the prediction results of our approach and other prediction approaches, we conclude that it is advantageous to use our approach for prediction of cis regulatory binding sites in prokaryotes. The prediction software package PFP is available at http://csbl.bmb.uga.edu/~dongsheng/PFP .

Keywords

Reference Genome Orthologous Gene Motif Discovery Target Genome Prokaryotic Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tagle, D.A., Koop, B.F., Goodman, M., Slightom, J.L., Hess, D.L., Jones, R.T.: Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints 203, 439–455 (1988)Google Scholar
  2. 2.
    Tatusov, R.L., Koonin, E.V., Lipman, D.J.: A genomic perspective on protein families. Science 278, 631–637 (1997)CrossRefGoogle Scholar
  3. 3.
    Li, L., Stoeckert Jr, C.J., Roos, D.S.: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome research 13, 2178–2189 (2003)CrossRefGoogle Scholar
  4. 4.
    Wang, T., Stormo, G.D.: Identifying the conserved network of cis-regulatory sites of a eukaryotic genome. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 17400–17405 (2005)Google Scholar
  5. 5.
    Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., Kellis, M.: Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434, 338–345 (2005)CrossRefGoogle Scholar
  6. 6.
    Wu, H., Mao, F., Olman, V., Xu, Y.: Accurate prediction of orthologous gene groups in microbes. In: Proceedings/ IEEE Computational Systems Bioinformatics Conference, CSB, pp. 73–79 (2005)Google Scholar
  7. 7.
    Westover, B.P., Buhler, J.D., Sonnenburg, J.L., Gordon, J.I.: Operon prediction without a training set. Bioinformatics (Oxford, England) 21, 880–888 (2005)CrossRefGoogle Scholar
  8. 8.
    Ermolaeva, M.D., White, O., Salzberg, S.L.: Prediction of operons in microbial genomes. Nucleic acids research 29, 1216–1221 (2001)CrossRefGoogle Scholar
  9. 9.
    Che, D., Zhao, J., Cai, L., Xu, Y.: Operon Prediction in Microbial Genomes Using Decision Tree Approach. In: Proceedings of IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 135–142 (2007)Google Scholar
  10. 10.
    Price, M.N., Huang, K.H., Alm, E.J., Arkin, A.P.: A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic acids research 33, 880–892 (2005)CrossRefGoogle Scholar
  11. 11.
    Dam, P., Olman, V., Harris, K., Su, Z., Xu, Y.: Operon prediction using both genome-specific and general genomic information. Nucleic acids research 35, 288–298 (2007)CrossRefGoogle Scholar
  12. 12.
    McCue, L., Thompson, W., Carmack, C., Ryan, M.P., Liu, J.S., Derbyshire, V., Lawrence, C.E.: Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic acids research 29, 774–782 (2001)CrossRefGoogle Scholar
  13. 13.
    McCue, L.A., Thompson, W., Carmack, C.S., Lawrence, C.E.: Factors influencing the identification of transcription factor binding sites by cross-species comparison. Genome research 12, 1523–1532 (2002)CrossRefGoogle Scholar
  14. 14.
    McGuire, A.M., Hughes, J.D., Church, G.M.: Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes. Genome research 10, 744–757 (2000)CrossRefGoogle Scholar
  15. 15.
    Neph, S., Tompa, M.: MicroFootPrinter: a tool for phylogenetic footprinting in prokaryotic genomes. Nucleic acids research 34, 366–368 (2006)CrossRefGoogle Scholar
  16. 16.
    Jensen, S.T., Shen, L., Liu, J.S.: Combining phylogenetic motif discovery and motif clustering to predict co-regulated genes. Bioinformatics (Oxford, England) 21, 3832–3839 (2005)CrossRefGoogle Scholar
  17. 17.
    Hu, J., Li, B., Kihara, D.: Limitations and potentials of current motif discovery algorithms. Nucleic acids research 33, 4899–4913 (2005)CrossRefGoogle Scholar
  18. 18.
    Mehlhorn, K., Näher, S.: Leda: a platform for combinatorial and geometric computing. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  19. 19.
    Tan, K., Moreno-Hagelsieb, G., Collado-Vides, J., Stormo, G.D.: A comparative genomics approach to prediction of new members of regulons. Genome research 11, 566–584 (2001)CrossRefGoogle Scholar
  20. 20.
    Che, D., Jensen, S., Cai, L., Liu, J.S.: BEST: binding-site estimation suite of tools. Bioinformatics (Oxford, England) 21, 2909–2911 (2005)CrossRefGoogle Scholar
  21. 21.
    Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M.: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature biotechnology 16, 939–945 (1998)CrossRefGoogle Scholar
  22. 22.
    Liu, X., Brutlag, D., Liu, J.: BioProspector: discovering conserved DNA motifs in upstream regulatory regions of coexpressed genes. Pac. Symp. Biocomput, 127–138 (2001)Google Scholar
  23. 23.
    Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics (Oxford, England) 15, 563–577 (1999)CrossRefGoogle Scholar
  24. 24.
    Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28–36. AAAI Press, Menlo Park, California (1994)Google Scholar
  25. 25.
    Jensen, S.T., Liu, J.S.: BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioinformatics (Oxford, England) 20, 1557–1564 (2004)CrossRefGoogle Scholar
  26. 26.
    Munch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., Jahn, D.: Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics (Oxford, England) 21, 4187–4189 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dongsheng Che
    • 1
    • 2
  • Guojun Li
    • 1
  • Shane T. Jensen
    • 3
  • Jun S. Liu
    • 4
  • Ying Xu
    • 1
  1. 1.Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of BioinformaticsUniversity of GeorgiaAthensUSA
  2. 2.Department of Computer ScienceUniversity of GeorgiaAthensUSA
  3. 3.Department of Statistics, The Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of StatisticsHarvard UniversityCambridgeUSA

Personalised recommendations