Advertisement

Hyperheuristics: Recent Developments

  • Konstantin Chakhlevitch
  • Peter Cowling
Part of the Studies in Computational Intelligence book series (SCI, volume 136)

Abstract

Given their economic importance, there is continuing research interest in providing better and better solutions to real-world scheduling problems. The models for such problems are increasingly complex and exhaustive search for optimal solutions is usually impractical. Moreover, difficulty in accurately modelling the problems means that mathematically “optimal” solutions may not actually be the best possible solutions in practice. Therefore heuristic methods are often used, which do not guarantee optimal or even near optimal solutions. The main goal of heuristics is to produce solutions of acceptable quality in reasonable time. The problem owners often prefer simple, easy to implement heuristic approaches which do not require significant amount of resources for their development and implementation [12]. However, such individual heuristics do not always perform well for the variety of problem instances which may be encountered in practice. There is a wide range of modern heuristics known from the literature which are specifically designed and tuned to solve certain classes of optimisation problems. These methods are based on the partial search of the solution space and often referred as metaheuristics.

Keywords

Hyperheuristics multilevel heuristics greedy heuristics learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E.H.L., Korst, J.H.M., van Laarhoven, P.J.M.: Simulated annealing. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimisation, pp. 91–120. John Wiley & Sons, Chichester (1997)Google Scholar
  2. 2.
    Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Management Science 34, 391–401 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ayob, M., Kendall, G.: A Monte Carlo hyper-heuristic to optimise component placement sequencing for multi head placement machine. In: Proceedings of the 2003 International Conference on Intelligent Technologies (InTech2003), Thailand, pp. 132–141 (2003)Google Scholar
  4. 4.
    Bai, R., Kendall, G.: An investigation of automated planograms using a simulated annealing based hyper-heuristic. In: Proceedings of the 5th Metaheuristics International Conference (MIC2003), Kyoto, Japan, August 23-25 (2003)Google Scholar
  5. 5.
    Brailsford, S., Potts, C., Smith, B.: Constraint satisfaction problems: Algorithms and applications. European Journal of Operational Research 119, 557–581 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Brelaz, D.: New methods to colour the vertices of the graph. Communications of the ACM 22, 251–256 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  8. 8.
    Burke, E., Dror, M., Petrovic, S., Qu, R.: Hybrid graph heuristics within a hyper-heuristic approach to exam timetabling problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimisation and Decision Technologies. Conference 9th INFORMS Computing Society Conference, vol. 9, pp. 79–91. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Selected Papers from the 5th Metaheuristics International Conference (MIC 2003). Operations Research/Computer Science Interfaces Series, vol. 32, pp. 129–158. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Burke, E., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper heuristic for timetabling problems. Technical Report NOTTCS-TR-2004-9, School of Computer Science and Information Technology, University of Nottingham (2004)Google Scholar
  11. 11.
    Burke, E., Petrovic, S., Qu, R.: Case based heuristic selection for examination timetabling. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 277–281. Orchid Country Club, Singapore (2002)Google Scholar
  12. 12.
    Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyperheuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  13. 13.
    Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9, 451–470 (2003)CrossRefGoogle Scholar
  14. 14.
    Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Knowledge discovery in a hyper-heuristic for course timetabling using case-based reasoning. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 90–103. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Burke, E., Soubeiga, E.: Scheduling nurses using a tabu-search hyperheuristic. In: Kendall, G., Burke, E., Petrovic, S. (eds.) Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK, pp. 197–218 (2003)Google Scholar
  16. 16.
    Chakhlevitch, K.: A hyperheuristic methodology for real-world scheduling. PhD Thesis, Department of Computing, University of Bradford, UK (2006)Google Scholar
  17. 17.
    Cowling, P.I., Chakhlevitch, K.: Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic Framework. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 23–33. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1214–1221. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  19. 19.
    Cowling, P., Chakhlevitch, K.: Using a large set of low level heuristics in a hyperheuristic approach to personnel scheduling. In: Dahal, K., Tan, K.C., Cowling, P.I. (eds.) Evolutionary Scheduling. Springer, Heidelberg (to appear, 2007)Google Scholar
  20. 20.
    Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Proceedings of 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1185–1190. IEEE Computer Society Press, Honolulu, USA (2002)CrossRefGoogle Scholar
  21. 21.
    Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for scheduling a sales summit. In: Proceedings of the Third Metaheuristic International Conference (MIC 2001), Porto, Portugal, pp. 127–131 (2001)Google Scholar
  23. 23.
    Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 1–10. Springer, Berlin (2002)CrossRefGoogle Scholar
  24. 24.
    Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a robust optimisation method applied to nurse scheduling. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 851–860. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling environment. Computers and Operations Research 22, 25–40 (1995)zbMATHCrossRefGoogle Scholar
  26. 26.
    Dowsland, K., Soubeiga, E., Burke, E.: Solving a shipper rationalisation problem with a simulated annealing based hyperheuristic. Technical Report NOTTCSTR-2004-1, School of Computer Science and Information Technology, University of Nottingham (2004)Google Scholar
  27. 27.
    Dueck, G.: New optimisation heuristics: the great deluge algorithm and the record-to-record travel. Journal of Computational Physics 104, 86–92 (1993)zbMATHCrossRefGoogle Scholar
  28. 28.
    Fang, H.-L., Ross, P., Corne, D.: A promising hybrid GA/heuristic approach for open-shop scheduling problems. In: Cohn, A. (ed.) Proceedings of ECAI 1994: 11th European Conference on Artificial Intelligence, pp. 590–594. John Wiley, Chichester (1994)Google Scholar
  29. 29.
    Fink, E.: How to solve it automatically: selection among problem-solving methods. In: Proceedings of the 4th International Conference of AI Planning Systems, pp. 128–136. AAAI Press, Menlo Park (1998)Google Scholar
  30. 30.
    Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop scheduling rules. In: Factory Scheduling Conference, May 10-12, 1961, Carnegie Institute of Technology (1961)Google Scholar
  31. 31.
    Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice Hall, Englewood Cliffs (1963)Google Scholar
  32. 32.
    Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Norwell (1997)zbMATHGoogle Scholar
  33. 33.
    Glover, F., Laguna, M.: Tabu search. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, pp. 70–150. Blackwell Scientific Publications, Malden (1993)Google Scholar
  34. 34.
    Gratch, J., Chien, S.: Adaptive problem-solving for large-scale scheduling problems: a case study. Journal of Artificial Intelligence Research 4, 365–396 (1996)Google Scholar
  35. 35.
    Gratch, J., Chien, S., DeJong, G.: Learning search control knowledge for deep space network scheduling. In: Proceedings of the 10th International Conference on Machine Learning, Amherst, USA, pp. 135–142 (1993)Google Scholar
  36. 36.
    Gupta, J.N.D., Sexton, R.S., Tunc, E.A.: Selecting scheduling heuristics using neural networks. INFORMS Journal on Computing 12, 150–162 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Han, L., Kendall, G.: Guided operators for a hyper-heuristic genetic algorithm. In: Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 807–820. Springer, Heidelberg (2003)Google Scholar
  38. 38.
    Han, L., Kendall, G.: An investigation of a tabu assisted hyper-heuristic genetic algorithm. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), pp. 2230–2237. IEEE Computer Society Press, Canberra, Australia (2003)Google Scholar
  39. 39.
    Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyperheuristic genetic algorithm for a trainer scheduling problem. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 267–271. Orchid Country Club, Singapore (2002)Google Scholar
  40. 40.
    Hansen, P., Mladenović, N.: Variable neighbourhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Hart, E., Ross, P.: A heuristic combination method for solving job-shop scheduling problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 845–854. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  42. 42.
    Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving heuristically driven schedule builder. Evolutionary Computation 6, 61–80 (1998)CrossRefGoogle Scholar
  43. 43.
    Hart, E., Ross, P., Nelson, J.: Scheduling chicken catching – An investigation into the success of a genetic algorithm on a real-world scheduling problem. Annals of Operations Research 92, 363–380 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)Google Scholar
  45. 45.
    Kendall, G., Mohamad, M.: Channel assignment in cellular communication using a Great Deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International Conference on Networks (ICON 2004), Singapore, November 16-19 (2004)Google Scholar
  46. 46.
    Kendall, G., Mohamad, M.: Channel assignment optimisation using a hyperheuristic. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2004), Singapore, December 1-3 (2004)Google Scholar
  47. 47.
    Kendall, G., Mohd Hussin, N.: Tabu search hyper-heuristic approach to the examination timetabling problem at University of Technology MARA. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–217. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  48. 48.
    Kendall, G., Mohd Hussin, N.: An investigation of a tabu search based hyperheuristic for examination timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau, M. (eds.) Multidisciplinary Scheduling: Theory and Applications, Selected papers from the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), pp. 309–328. Springer, Heidelberg (2005)Google Scholar
  49. 49.
    Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuristics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 667–671. Orchid Country Club, Singapore (2002)Google Scholar
  50. 50.
    Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 511–518 (2000)Google Scholar
  51. 51.
    Minton, S.: Integrating heuristics for constraint satisfaction problems: a case study. In: AAAI Proceedings (1993)Google Scholar
  52. 52.
    Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (1993)Google Scholar
  53. 53.
    Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Resende, M., de Sousa, J. (eds.) Metaheuristics: Computer decision-making, pp. 523–544. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  54. 54.
    Norenkov, I.: Scheduling and allocation for simulation and synthesis of CAD system hardware. In: Proceedings of EWITD 1994, East-West International Conference, Moscow, ICSTI, pp. 20–24 (1994)Google Scholar
  55. 55.
    Norenkov, I., Goodman, E.: Solving scheduling problems via evolutionary methods for rule sequence optimisation. In: Second World Conference on Soft Computing (WSC2) (June 1997)Google Scholar
  56. 56.
    Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in a hyperheuristic for course timetabling problems. In: Proceedings of the 6th International Conference on Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies (KES 2002), Crema, Italy, pp. 336–340 (2002)Google Scholar
  57. 57.
    Qu, R., Burke, E.: Hybrid variable neighbourhood hyperheuristics for exam timetabling problems. In: Proceedings of the 6th Metaheuristics International Conference (MIC 2005), Vienna, Austria (2005)Google Scholar
  58. 58.
    Randall, M., Abramson, D.: A general meta-heuristic based solver for combinatorial optimisation problems. Computational Optimisation and Applications 20, 185–210 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Ross, P., Marín-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure that can solve hard bin-packing problems: a new GA-based approach to hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1295–1306. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  60. 60.
    Ross, P., Schulenburg, S., Marín-Bl ázquez, J.G., Hart, E.: Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 942–948. Morgan Kaufmann, San Francisco (2002)Google Scholar
  61. 61.
    Soubeiga, E.: Development and application of hyperheuristics to personnel scheduling. PhD Thesis, Department of Computer Science, University of Nottingham, UK (2003)Google Scholar
  62. 62.
    Storer, R.H., Wu, S.D., Vaccari, R.: Problem and heuristic search space strategies for job shop scheduling. ORSA Journal on Computing 7, 453–467 (1995)zbMATHGoogle Scholar
  63. 63.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  64. 64.
    Terashima-Marín, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint satisfaction strategies in examination timetabling. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan Kaufmann, San Francisco (1999)Google Scholar
  65. 65.
    Wilson, S.W.: Classifier systems based on accuracy. Evolutionary Computation 3, 149–175 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Konstantin Chakhlevitch
    • 1
  • Peter Cowling
    • 2
  1. 1.CASS Business SchoolCity UniversityLondonUK
  2. 2.Department of ComputingUniversity of BradfordBradfordUK

Personalised recommendations