Skip to main content

Integer Programming Approaches to Access and Backbone IP Network Planning

  • Conference paper
Book cover Modeling, Simulation and Optimization of Complex Processes

Abstract

In this article we study the problem of designing a nation-wide communication network. Such networks usually consist of an access layer, a backbone layer, and maybe several intermediate layers. The nodes of each layer must be connected to those of the next layer in a tree-like fashion. The backbone layer must satisfy survivability and IP-routing constraints.

Given the node locations, the demands between them, the possible connections and hardware configurations, and various other technical and administrational constraints, the goal is to decide, which node is assigned to which network level, how the nodes are connected, what hardware must be installed, and how traffic is routed in the backbone.

Mixed integer linear programming models and solution methods are presented for both the access and the backbone network design problem. The focus is on the design of IP-over-SDH networks, but the access network design model and large parts of the backbone network design models are general and also applicable for other types of communication networks. Results obtained with these methods in the planning of the German research network are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Alevras, M. Grötschel, and R. Wessäly, Capacity and survivability models for telecommunications networks, Tech. Report SC 97-24, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1997.

    Google Scholar 

  2. K. Aardal, M. Labbé, J. Leung, and M. Queyranne, On the two-level uncapacitated facility location problem, INFORMS Journal on Computing 8 (1996), 289–301.

    Article  MATH  Google Scholar 

  3. W. Ben-Ameur and E. Gourdin, Internet routing and related topology issues, SIAM Journal on Discrete Mathematics 17 (2003), 18–49.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Ben-Ameur, E. Gourdin, and B. Liau, Internet routing and topology problems, Proceedings of DRCN2000 (Munich), 2000.

    Google Scholar 

  5. D. Bienstock, S. Chopra, O. Günlük, and C-Y. Tsai, Minimum cost capacity installation for multicommodity network flows, Mathematical Programming 81 (1998), 177–199.

    MathSciNet  Google Scholar 

  6. S. Borne, E. Gourdin, B. Liau, and A. Mahjoub, Design of survivable IP-over-optical networks, Proceedings of the First International Network Optimization Conference (INOC 2003), Paris, 2003, pp. 114–118.

    Google Scholar 

  7. A. Bley, M. Grötschel, and R. Wessäly, Design of broadband virtual private networks: Model and heuristics for the B-WiN, Robust Communication Networks: Interconnection and Survivability (N. Dean, D. F. Hsu, and R. Ravi, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 53, AMS, 1998, pp. 1–16.

    Google Scholar 

  8. A. Bley and T. Koch, Optimierung des G-WiN, DFN-Mitteilungen 54 (2000), 13–15.

    Google Scholar 

  9. A. Bley, T. Koch, and R. Wessäly, Large-scale hierarchical networks: How to compute an optimal architecture?, Proceedings of Networks 2004 (Vienna), VDE Verlag, 2004, pp. 429–434.

    Google Scholar 

  10. A. Bley, A Lagrangian approach for integrated network design and routing in IP networks, Proceedings of the First International Network Optimization Conference (INOC 2003), Paris, 2003, pp. 107–113.

    Google Scholar 

  11. A. Bley, On the approximability of the minimum congestion unsplittable shortest path routing problem, Proceedings of 11th Conference on Integer Programming and Combinatorial Optimization (IPCO 2005), Berlin, 2005, pp. 97–110.

    Google Scholar 

  12. A. Bley, Inapproximability results for the inverse shortest paths problem with integer lengths and unique shortest paths, Networks 50 (2007), 29–36.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Bley, Routing and capacity optimization for IP networks, Ph.D. thesis, Technische Universität Berlin, 2007.

    Google Scholar 

  14. E. A. Boyd, Polyhedral results for the precedence-constrained knapsack problem, Discrete Applied Mathematics 41 (1993), 185–201.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Buriol, M. Resende, C. Ribeiro, and M. Thorup, A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing, Networks 46 (2005), 36–56.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Buriol, M. Resende, and M. Thorup, Survivable IP network design with OSPF routing, Optimization Online (2004).

    Google Scholar 

  17. E. Balas and E. Zemel, Facets of the knapsack polytope from minimal covers, SIAM Journal on Applied Mathematics 34 (1978), 119–148.

    Article  MATH  MathSciNet  Google Scholar 

  18. ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA, ILOG CPLEX 7.5 reference manual, 2001, Information available at http://www.cplex.com

  19. J. Crowcroft and Z. Wang, Analysis of shortest-path routing algorithms in a dynamic network environment, ACM SIGCOM Computer Communication Review 22 (1992), 63–71.

    Google Scholar 

  20. M. Ericsson, M. G. C. Resende, and P. M. Pardalos, A genetic algorithm for the weight setting problem in OSPF routing, Tech. report, AT&T Labs Research, 2001.

    Google Scholar 

  21. A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, NetScope: Traffic engineering for IP networks, IEEE Network 14 (2000), 11–19.

    Article  Google Scholar 

  22. C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey, Formulations and valid inequalities of the node capacitated graph partitioning problem, Mathematical Programming 74 (1996), 247–266.

    MathSciNet  Google Scholar 

  23. B. Fortz and M. Thorup, Internet traffic engineering by optimizing OSPF weights, Proceedings of IEEE INFOCOM 2000, 2000.

    Google Scholar 

  24. B. Fortz and M. Thorup, Increasing internet capacity using local search, Computational Optimization and Applications 29 (2004), 13–48.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Grötschel, C. L. Monma, and M. Stoer, Design of survivable networks, Handbooks in Operations Research and Management Science, vol. Network Models, ch. 10, pp. 617–672, North-Holland, 1995.

    Google Scholar 

  26. E. Gourdin, Optimizing internet networks, OR/MS Today (2001), 46–49.

    Google Scholar 

  27. L. Hall, Experience with a cutting plane algorithm for the capacitated spanning tree problem, INFORMS Journal on Computing 8 (1996), 219–234.

    Article  MATH  Google Scholar 

  28. K. Holmberg and D. Yuan, Optimization of Internet protocol network design and routing, Networks 43 (2004), 39–53.

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Koch and A. Martin, Solving Steiner tree problems in graphs to optimality, Networks 32 (1998), 207–232.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Kerivin and A. Mahjoub, Design of survivable networks: A survey, Networks 46 (2005), 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Y. S. Lin and J. L. Wang, Minimax open shortest path first routing algorithms in networks suporting the SMDS service, Tech. report, Bell Communications Research, 1993.

    Google Scholar 

  32. A. Martin, Integer programs with block structure, Habilitations-Schrift, Technische Universität Berlin, 1998.

    Google Scholar 

  33. S. Melkote and M. S. Daskin, Capacitated facility location/network design problems, European Journal of Operations Research 129 (2001), 481–495.

    Article  MATH  MathSciNet  Google Scholar 

  34. P. Mirchandani and R. Francis (eds.), Discrete location theory, Wiley, New York, 1990.

    MATH  Google Scholar 

  35. G. L. Nemhauser and P. H. Vance, Lifted cover facets of the 0-1 knapsack polytope with GUB constraints, Operations Research Letters 16 (1994), 255–263.

    Article  MATH  MathSciNet  Google Scholar 

  36. K. Park, K. Lee, S. Park, and H. Lee, Telecommunication node clustering with node compatibility and network survivability requirements, Management Science 46 (2000), 263–374.

    Article  Google Scholar 

  37. M. Prytz, On optimization in design of telecommunications networks with multicast and unicast traffic, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden, 2002.

    Google Scholar 

  38. D. Staehle, S. Köhler, and U. Kohlhaas, Towards an optimization of the routing parameters for IP networks, Tech. report, Department of Computer Science, University of Würzburg, 2000.

    Google Scholar 

  39. R. Wunderling, Paralleler und objektorientierter simplex, Tech. Report TR 96-09, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1996, Information available at http://www.zib.de/Optimization/Software/Soplex

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bley, A., Koch, T. (2008). Integer Programming Approaches to Access and Backbone IP Network Planning. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79409-7_7

Download citation

Publish with us

Policies and ethics