Skip to main content

ROP (Rho-Related Protein from Plants) GTPases for Spatial Control of Root Hair Morphogenesis

  • Chapter
Root Hairs

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 12))

Abstract

Cell polarity control is inherently a complex process based on the feedback loops where it is difficult to distinguish cause–effect relationships and identify “master regulators.” However, small GTPases from the Rac/Rho family are certainly an important part of polar growth core regulatory circuit/network also in plants. ROPs (Rac/Rho of plant) involvement in root hair polar tip-growth is best documented by the loss of polarity in plants overexpressing specific ROP GTPases, loss of polarized cell expansion in root hairs of RopGDI mutant and root hair tip localization of ROP-GFP fusions. Rho/Rac GTPases switch directs cell growth via a plethora of regulatory and effector proteins known from Opisthokonts, and only recently some of them have been identified also in plant cells. We will review and discuss their root hair function in relation to the cytoskeleton dynamics, Ca2+ gradient, NADPH oxidase activity/ROS (reactive oxygen species), cell wall dynamics, phospholipid signaling, auxin signaling, and polarized/targeted secretory vesicle transport and fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baluska F, Hlavacka A (2005) Plant formins come of age: something special about cross-walls. New Phytol 168:499–503

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua NH, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Liners F, Hlavacka A, Schlicht M, Van Cutsem P, McCurdy DW, Menzel D (2005) Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 225:141–155

    Article  PubMed  CAS  Google Scholar 

  • Berken (2006) A ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci 63:2446–2459

    Article  PubMed  CAS  Google Scholar 

  • Berken A, Thomas C, Wittinghofer A (2005) A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    Article  PubMed  CAS  Google Scholar 

  • Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S (2005) Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 16:1913–1927

    Article  PubMed  CAS  Google Scholar 

  • Brembu T, Winge P, Bones AM, Yang Z (2006) A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases. Cell Res 16:435–445

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Dolan L (2002) Building a hair: tip growth in Arabidopsis thaliana root hairs. Philos Trans R Soc Lond B Biol Sci 357:815–821

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9:597–588

    Article  Google Scholar 

  • Cole RA, Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018

    Article  PubMed  CAS  Google Scholar 

  • Christensen TM, Vejlupkova Z, Sharma YK, Arthur KM, Spatafora JW, Albright CA, Meeley RB, Duvick JP, Quatrano RS, Fowler JE (2003) Conserved subgroups and developmental regulation in the monocot rop gene family. Plant Physiol 133:1791–1808

    Article  PubMed  CAS  Google Scholar 

  • Cvrckova F, Elias M, Hala M, Obermeyer G, Zarsky V (2001) Small GTPases and conserved signalling pathways in plant cell morphogenesis: from exocytosis to the Exocyst. In: Geitmann A, Cresti M, Heath B (eds) Cell biology of plant and fungal tip growth. IOS Press, Amsterdam, pp 105–122

    Google Scholar 

  • Deeks MJ, Cvrckova F, Machesky LM, Mikitova V, Ketelaar T, Zarsky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540

    Article  PubMed  CAS  Google Scholar 

  • DerMardirossian CM, Bokoch GM (2006) Phosphorylation of RhoGDI by p21-activated kinase 1. Methods Enzymol 406:80–90

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluska F, Schlicht M, Hlavacka A, Samaj J, Friml J, Gadella TW Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Dovas A, Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dransart E, Olofsson B, Cherfils J (2005) RhoGDIs revisited: novel roles in Rho regulation. Traffic 6:957–966

    Article  PubMed  CAS  Google Scholar 

  • Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V (2003) The exocyst complex in plants. Cell Biol Int 27:199–201

    Article  PubMed  CAS  Google Scholar 

  • Elmayan T, Fromentin J, Riondet C, Alcaraz G, Blein JP, Simon-Plas F (2007) Regulation of reactive oxygen species production by a 14–3–3 protein in elicited tobacco cells. Plant Cell Environ 30:722–732

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Curr Biol 16:2143–2149

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Ikeda Y, Grebe M (2007) Planar polarity of root hair positioning in Arabidopsis. Biochem Soc Trans 35:149–151

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Li S, Lord EM, Yang Z (2006) Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell 18:366–381

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101

    Article  PubMed  CAS  Google Scholar 

  • Hemsley PA, Kemp AC, Grierson CS (2005) The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17:2554–2563

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, TerBush D, Abraham M, Guo W (2004) The exocyst complex in polarized exocytosis. Int Rev Cytol 233:243–265

    Article  PubMed  CAS  Google Scholar 

  • Hwang JU, Gu Y, Lee YJ, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399

    Article  PubMed  CAS  Google Scholar 

  • Ivanchenko M, Vejlupkova Z, Quatrano RS, Fowler JE (2000) Maize ROP7 GTPase contains a unique, CaaX box-independent plasma membrane targeting signal. Plant J 24:79–90

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Yang Z, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Smirnoff N (2006) Nuclear dynamics during the simultaneous and sustained tip growth of multiple root hairs arising from a single root epidermal cell. J Exp Bot 57:4269–4275

    Article  PubMed  CAS  Google Scholar 

  • Kaothien P, Ok SH, Shuai B, Wengier D, Cotter R, Kelley D, Kiriakopolos S, Muschietti J, McCormick S (2005) Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant J 42:492–503

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, de Ruijter NC, Emons AM (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NC, Grierson CS, Dogterom M, Emons AM (2002) Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941– 2955

    Article  PubMed  CAS  Google Scholar 

  • Klahre U, Becker C, Schmitt AC, Kost B (2006a) Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J 46:1018–1031

    Article  PubMed  CAS  Google Scholar 

  • Klahre U, Kost B (2006b) Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell 18:3033–3046

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  PubMed  CAS  Google Scholar 

  • Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S (2007) A Novel ROP/RAC Effector Links Cell Polarity, Root-Meristem Maintenance, and Vesicle Trafficking. Curr Biol May 8 [Epub ahead of print]

    Google Scholar 

  • Lavy M, Bracha-Drori K, Sternberg H, Yalovsky S (2002) A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs. Plant Cell 14:2431–2450

    Article  PubMed  CAS  Google Scholar 

  • Lavy M, Yalovsky S (2006) Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain. Plant J 46:934–947

    Article  PubMed  CAS  Google Scholar 

  • Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Mathur J (2006) Local interactions shape plant cells. Curr Opin Cell Biol 18:40–46

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Hulskamp M (2003) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–1645

    Article  PubMed  CAS  Google Scholar 

  • Meller N, Merlot S, Guda C (2005) CZH proteins: a new family of Rho-GEFs. J Cell Sci 118:4937–4946

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, De Ruijter NCA, Bisselign T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J. 17:141–154

    Article  CAS  Google Scholar 

  • Miller DD, Klooster L-t, Emons AMC (2000) Lipochito-oligosaccharide nodulation factors stimulate cytoplasmic polarity with longitudinal endoplasmic reticulum and vesicles at the tip in vetch root hairs. Mol Plant-Microbe Interact 13:1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Molendijk AJ, Ruperti B, Palme K (2004) Small GTPases in vesicle trafficking. Curr Opin Plant Biol 7:694–700

    Article  PubMed  CAS  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5:1396–1411

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Medkova M, Dong G, Hutagalung A, Reinisch K, Grosshans B (2006) Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem Soc Trans 34:683–686

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759–764

    Article  PubMed  CAS  Google Scholar 

  • Oude Weernink PA, Han L, Jakobs KH, Schmidt M (2007) Dynamic phospholipid signaling by G protein-coupled receptors. Biochim Biophys Acta 1768:888–900

    Article  PubMed  CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  PubMed  CAS  Google Scholar 

  • Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    Article  PubMed  CAS  Google Scholar 

  • Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS (2000) Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12:1961–1974

    Article  PubMed  CAS  Google Scholar 

  • Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  PubMed  CAS  Google Scholar 

  • Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14:101–118

    Article  PubMed  CAS  Google Scholar 

  • Roumanie O, Wu H, Molk JN, Rossi G, Bloom K, Brennwald P (2005) Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 170:583–594

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  CAS  Google Scholar 

  • Sieberer BJ, Ketelaar T, Essling JJ, Emons AMC (2005) Microtubules guide root hair tip growth. New Phytol 167:711–719

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295

    Article  PubMed  CAS  Google Scholar 

  • Somers WG, Chia W (2005) Recycling polarity. Dev Cell 9:312–313

    Article  PubMed  CAS  Google Scholar 

  • Sorek N, Poraty L, Sternberg H, Bar E, Lewinsohn E, Yalovsky S (2007) Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase. Mol Cell Biol 27:2144–2154

    Article  PubMed  CAS  Google Scholar 

  • Sormo CG, Leiros I, Brembu T, Winge P, Os V, Bones AM (2006) The crystal structure of Arabidopsis thaliana RAC7/ROP9: the first RAS superfamily GTPase from the plant kingdom. Phytochemistry 67:2332–2340

    Article  PubMed  CAS  Google Scholar 

  • Synek L, Schlager N, Elias M, Quentin M, Hauser MT, Zarsky V (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48:54–72

    Article  PubMed  CAS  Google Scholar 

  • Tao LZ, Cheung AY, Wu HM (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Fricke I, Scrima A, Berken A, Wittinghofer A (2007) Structural evidence for a common intermediate in small G protein-GEF reactions. Mol Cell 25:141–149

    Article  PubMed  CAS  Google Scholar 

  • Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393–406

    Article  PubMed  CAS  Google Scholar 

  • Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, Uhrig S, Rambke C, Hussey PJ, Hulskamp M (2007) The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134:967–977

    Article  PubMed  CAS  Google Scholar 

  • Valdez-Taubas J, Pelham HR (2003) Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13:1636–1640

    Article  PubMed  CAS  Google Scholar 

  • Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812

    Article  PubMed  CAS  Google Scholar 

  • Vissenberg K, Fry SC, Verbelen JP (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Winge P, Brembu T, Kristensen R, Bones AM (2000) Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156:1959–1971

    PubMed  CAS  Google Scholar 

  • Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol 138:1637–1643

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–2856

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Li H, Yang Z (2000) Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation. Plant Physiol 124:1625–1636

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14:S375–S388

    PubMed  CAS  Google Scholar 

  • Yi K, Guo C, Chen D, Zhao B, Yang B, Ren H (2005) Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol 138:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Zarsky V, Potocky M, Baluska F, Cvrckova F (2006) Lipid metabolism, compartmentalization and signalling in the regulation of pollen tube growht. In: Malhó R (ed) The pollen tube - A cellular perspective, Plant cell monographs, vol 3. Springer, Berlin, Heidelberg New York, pp 117–138

    Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Moll Cell Biol 2:107–117

    Article  CAS  Google Scholar 

  • Zheng ZL, Yang Z (2000) The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 44:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgments We are grateful to Hana Soukupova for the help with the finalization of this chapter. The related work in the author’s laboratories was supported by the Academy of Sciences of the Czech Republic Grant Agency grant IAA6038410 to V.Z., NSF grant IBN-0420226 to J.F., and KONTAKT MSMT CR – ME841 and MSM0021620858 to V.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Žárský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Žárský, V., Fowler, J. (2009). ROP (Rho-Related Protein from Plants) GTPases for Spatial Control of Root Hair Morphogenesis. In: Emons, A.M.C., Ketelaar, T. (eds) Root Hairs. Plant Cell Monographs, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79405-9_14

Download citation

Publish with us

Policies and ethics