Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 115))

Abstract

We report electrically detected electron-spin resonance (ESR) measurements in a high-mobility two-dimensional electron system formed in a Si/SiGe heterostructure. Firstly, we clarify the origin of the ESR-induced resistivity change by optimizing the configuration among the Landau levels and the chemical potential. The observed decrease in the longitudinal resistivity shows that the primary cause is a change in the chemical potential, not a rise in the electron temperature. Heat flow in steady state under resonance conditions is also discussed. Secondly, we demonstrate a novel analysis of the resistivity change to deduce the spin-relaxation times. The longitudinal spin-relaxation time T 1 is obtained to be of the order of 1 ms in an inplane magnetic field of 3.55 T. The suppression of the effect of the Rashba fields due to high-frequency spin precession qualitatively explains the very long T 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Stein, K. v. Klitzing, G. Weimann, Phys. Rev. Lett. 51, 130 (1983)

    Article  ADS  Google Scholar 

  2. M. Dobers, K. v. Klitzing, G. Weimann, Phys. Rev. B 38, 5453 (1988)

    Article  ADS  Google Scholar 

  3. H.W. Jiang, E. Yablonovitch, Phys. Rev. B 64, 041307(R) (2001)

    ADS  Google Scholar 

  4. M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann, K. Ploog, Phys. Rev. Lett. 61, 1650 (1988)

    Article  ADS  Google Scholar 

  5. A. Berg, M. Dobers, R.R. Gerhardts, K. v. Klitzing, Phys. Rev. Lett. 64, 2563 (1990)

    Article  ADS  Google Scholar 

  6. J. Matsunami, M. Ooya, T. Okamoto, Phys. Rev. Lett. 97, 066602 (2006)

    Article  ADS  Google Scholar 

  7. R. Meisels, Semicond. Sci. Technol. 20, R1 (2005)

    Article  ADS  Google Scholar 

  8. R.A. Guyer, R.C. Richardson, L.I. Zane, Rev. Mod. Phys. 43, 532 (1971)

    Article  ADS  Google Scholar 

  9. H. Honig, E. Stupp, Phys. Rev. Lett. 1, 275 (1958)

    Article  ADS  Google Scholar 

  10. G. Feher, E.A. Gere, Phys. Rev. 114, 1245 (1959)

    Article  ADS  Google Scholar 

  11. Z. Wilamowski, W. Jantsch, H. Malissa, U. Rössler, Phys. Rev. B 66, 195315 (2002)

    Article  ADS  Google Scholar 

  12. D.D. Awschalom, D. Loss, N. Samarth (eds.), Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002)

    Google Scholar 

  13. I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  14. C.F.O. Graeff, M.S. Brandt, M. Stutzmann, M. Holzmann, G. Abstreiter, F. Schäffler, Phys. Rev. B 59, 213242 (1999)

    Article  Google Scholar 

  15. Z. Wilamowski, W. Jantsch, Phys. Rev. B 69, 035328 (2004)

    Article  ADS  Google Scholar 

  16. A.M. Tyryshkin, S.A. Lyon, W. Jantsch, F. Schäffler, Phys. Rev. Lett. 94, 126802 (2005)

    Article  ADS  Google Scholar 

  17. S.V. Kravchenko, G.V. Kravchenko, J.E. Furneaux, V.M. Pudalov, M. D’Iorio, Phys. Rev. B 50, 8039 (1994)

    Article  ADS  Google Scholar 

  18. E. Abrahams, S.V. Kravchenko, M.P. Sarachik, Rev. Mod. Phys. 73, 251 (2001)

    Article  ADS  Google Scholar 

  19. T. Okamoto, S. Kawaji, J. Phys. Soc. Jpn. 65, 3716 (1996)

    Article  ADS  Google Scholar 

  20. T. Okamoto, S. Kawaji, Phys. Rev. B 57, 9097 (1998)

    Article  ADS  Google Scholar 

  21. T. Okamoto, M. Ooya, K. Hosoya, S. Kawaji, Phys. Rev. B 69, 041202(R) (2004)

    ADS  Google Scholar 

  22. T. Okamoto, K. Hosoya, S. Kawaji, A. Yagi, Phys. Rev. Lett. 82, 3875 (1999)

    Article  ADS  Google Scholar 

  23. V.M. Pudalov, M.E. Gershenson, H. Kojima, N. Butch, E.M. Dizhur, G. Brunthaler, A. Prinz, G. Bauer, Phys. Rev. Lett. 88, 196404 (2002)

    Article  ADS  Google Scholar 

  24. M. Ooya, J. Matsunami, T. Okamoto (unpublished)

    Google Scholar 

  25. C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer, Berlin, 1990)

    Google Scholar 

  26. C. Tahan, R. Joynt, Phys. Rev. B 71, 075315 (2005)

    Article  ADS  Google Scholar 

  27. Yu.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  28. D.M. Frenkel, Phys. Rev. B 43, 14228 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. W. Apel, Yu.A. Bychkov, Phys. Rev. Lett. 82, 3324 (1999)

    Article  ADS  Google Scholar 

  30. A.A. Burkov, L. Balents, Phys. Rev. B 69, 245312 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsunami, J., Okamoto, T. (2009). Electrical Detection of Electron-Spin Resonance in Two-Dimensional Systems. In: Fanciulli, M. (eds) Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures. Topics in Applied Physics, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79365-6_7

Download citation

Publish with us

Policies and ethics