Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 115))

Abstract

Since its development in the late 1940s, nuclear magnetic resonance (NMR) has emerged as a powerful technique for probing the local field distribution in liquid and solid matter as well as providing important information on spin and vortex dynamics. While significant progress has been achieved in NMR spectroscopy, conventional inductively detected NMR remains essentially a bulk technique that proves to be extremely difficult to scale down to systems of very small sizes. For the most part, NMR remains limited to systems with a total number of nuclear spins present in the sample exceeding ∼1016, hence prohibiting the NMR detection in a wide variety of systems. Recent advances in the engineering, design and fabrication of meso- and nanoscaled materials have resulted in an experimental measurement gap where conventional NMR techniques cannot be utilized because of the “too few spins” problem. For example, a GaAs/AlGaAs semiconductor heterostructure interface ∼30 nm wide has less than 1015 nuclear spins, a quantum dot ∼106–1010 spins and a single carbon nanotube 103 spins. The very few nuclei available in these systems makes traditional NMR measurements extremely difficult, if not totally impossible, unless the NMR detection scheme could be redefined in an entirely new way.

One appealing alternative to the conventional inductive NMR exists and makes it possible to obtain the nucleus’ point-of-view in GaAs-based semiconductors through a resistive detection. This approach seems promising to tackle a broader class of problems in systems of small sizes such as mesoscopic quantum dots and other nanostructures. We shall review here the state-of-the-art in the field of resistively detected NMR, and discuss recent advances such as the relaxation-time experiments and the development of pulsed techniques. Finally, we discuss how resistively detected NMR might be pushed towards the bottom so as to obtain a complete nucleus’ point-of-view of the nanoscale with “very little spins”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bloch, W.W. Hansen, M. Packard, Phys. Rev. 70, 474 (1946)

    Article  ADS  Google Scholar 

  2. E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69, 37 (1946)

    Article  ADS  Google Scholar 

  3. D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui, Nature 430, 329 (2004)

    Article  ADS  Google Scholar 

  4. S.E. Barrett, R. Tycko, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 72, 1368 (1994)

    Article  ADS  Google Scholar 

  5. G. Salis, D.T. Fuchs, J.M. Kikkawa, D.D. Awschalom, Y. Ohno, H. Ohno, Phys. Rev. Lett. 86, 2677 (2001)

    Article  ADS  Google Scholar 

  6. M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann, K. Ploog, Phys. Rev. Lett. 61, 1650 (1988)

    Article  ADS  Google Scholar 

  7. W. Desrat, D.K. Maude, M. Potemski, J.C. Portal, Z.R. Wasilewski, G. Hill, Phys. Rev. Lett. 88, 256807 (2002)

    Article  ADS  Google Scholar 

  8. K.R. Wald, L.P. Kouwenhoven, P.L. McEuen, N.C. van der Vaart, C.T. Foxon, Phys. Rev. Lett. 73, 1011 (1994)

    Article  ADS  Google Scholar 

  9. G. Gervais, H.L. Stormer, D.C. Tsui, P.L. Kuhns, W.H. Moulton, A.P. Reyes, L.N. Pfeiffer, K.W. West, Phys. Rev. B 72, R041310 (2005)

    Article  ADS  Google Scholar 

  10. K. Ono, S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004)

    Article  ADS  Google Scholar 

  11. G. Yusa, K. Muraki, K. Takashina, K. Hashimoto, Y. Hirayama, Nature 434, 1001 (2005)

    Article  ADS  Google Scholar 

  12. G. Gervais, H.L. Stormer, D.C. Tsui, P.L. Kuhns, W.H. Moulton, A.P. Reyes, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 94, 196803 (2005)

    Article  ADS  Google Scholar 

  13. L.A. Tracy, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. B 73, 121306 (2006)

    Article  ADS  Google Scholar 

  14. L. Brey, H.A. Fertig, R. Côté, A.H. MacDonald, Phys. Rev. Lett. 75, 2562 (1995)

    Article  ADS  Google Scholar 

  15. S.L. Sondhi, A. Karlhede, S.A. Kivelson, E.H. Rezayi, Phys. Rev. B 47, 16419 (1993)

    Article  ADS  Google Scholar 

  16. A. Schmeller, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 75, 4290 (1995)

    Article  ADS  Google Scholar 

  17. R. Côté, A.H. MacDonald, L. Brey, H.A. Fertig, S.M. Girvin, H.T.C. Stoof, Phys. Rev. Lett. 78, 4825 (1997)

    Article  ADS  Google Scholar 

  18. T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962), and references therein

    Article  MathSciNet  Google Scholar 

  19. J.R. Petta, A.C. Johnson, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 93, 1868702 (2004)

    Google Scholar 

  20. D. Vion, A. Aassime, A. Cottet, P. Joyez, J.H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 5569 (2002)

    Article  Google Scholar 

  21. M.N. Leuenberger, D. Loss, M. Poggio, D.D. Awschalom, Phys. Rev. Lett. 89, 207601 (2002)

    Article  ADS  Google Scholar 

  22. L.K. Grover, Phys. Rev. Lett. 79, 4709 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Gervais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gervais, G. (2009). Resistively Detected NMR in GaAs/AlGaAs. In: Fanciulli, M. (eds) Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures. Topics in Applied Physics, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79365-6_3

Download citation

Publish with us

Policies and ethics