Skip to main content

III-V Solar Cells and Concentrator Arrays

  • Chapter
Book cover High-Efficient Low-Cost Photovoltaics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 140))

Abstract

Semiconductor heterostructures allow us to solve the problems of controlling the fundamental parameters of the semiconductor devices. These heterostructures provide the ability to change the electronic band structure, band gaps and refractive indices of the material itself during epitaxial growth, as well as to control the effective masses and mobilities of the charge carriers in it. The development of the physics and technology of semiconductor heterostructures has resulted in remarkable changes in our everyday life. Heterostructure electronics is widely used in many areas. It is hardly possible to imagine our life without double heterostructure (DHS) laser-based telecommunication systems, heterostructure solar cells (HSSCs) and light-emitting diodes (LEDs), heterostructure bipolar transistors and low-noise, high-electron mobility transistors for high-frequency applications including, for example, satellite television. Now DHS lasers exist in practically every home in CD players. Heterostructure solar cells are widely used for space and terrestrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Shockley, Circuit Element Utilizing Semiconductor Material. U.S. Patent 2269347, September 25, 1951

    Google Scholar 

  2. A.I. Gubanov, Theory of the contact between two semiconductors with different types of conduction. Zh. Tekh. Fiz. 20, 1287 (1950)

    Google Scholar 

  3. H. Kroemer, Theory of a wide-gap emitter for transistors. Proc. IRE 45, 1535 (1957)

    Article  Google Scholar 

  4. Z.I. Alferov, The double heterostructure: concept and its applications in physics, electronics and technology. Les prix Nobel, Norstedts Tryckeri, Stockholm, 2001, pp. 65–93

    Google Scholar 

  5. H. Kroemer, A proposed class of heterojunction injection lasers. Proc. IEEE 51, 1782 (1963)

    Article  Google Scholar 

  6. Z.I. Alferov, V.B. Khalfin, R.F. Kazarinov, A characteristic feature of injection into heterojunctions. Fiz. Tverd. Tela 8, 3102–3105 (1966) [Sov. Phys. Solid State 8, 2480 (1967)]

    Google Scholar 

  7. Z.I. Alferov, Possible development of a rectifier for very high current densities on the bases of a p-i-n (p-n-n+, n-p-p+) structure with heterojunctions. Fiz. Tekh. Poluprovodn. 1, 436–438 (1966) [Sov. Phys. Semicond. 1, 358–361 (1967)]

    Google Scholar 

  8. R.L. Anderson, Germanium-gallium arsenide heterojunctions. IBM J. Res. Develop. 4, 283 (1960)

    Article  Google Scholar 

  9. Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, D.N. Tret’yakov, V.M. Tuchkevich, High-voltage p-n junctions in GaxAl1−xAs crystals. Fiz. Tekh. Poluprovodn. 1, 1579–1581 (1967) [Sov. Phys. Semicond. 1, 1313–1314 (1968)]

    Google Scholar 

  10. H.S. Rupprecht, J.M. Woodall, G.D. Pettit, Efficient visible electroluminescence at 300 K from Ga1−xAlxAs p-n junctions grown by liquid-phase epitaxy. Appl. Phys. Lett. 11, 81 (1967)

    Article  ADS  Google Scholar 

  11. Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoi, D.N. Tret’yakov, Injection properties of n-AlxGa1−xAs-p-GaAs heterojunctions. Fiz. Tekh. Poluprovodn. 2, 1016–1017 (1968) [Sov. Phys. Semicond. 2, 843–844 (1969)]

    Google Scholar 

  12. Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoy, D.N. Tret’yakov, Coherent radiation of epitaxial heterojunction structures in the AlAs-GaAs system. Fiz. Tekh. Poluprovodn. 2, 1545–1547 (1968) [Sov. Phys. Semicond. 2, 1289–1291 (1969)]

    Google Scholar 

  13. Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoi, D.N. Tret’yakov, Recombination radiation in epitaxial structures in the AlAs-GaAs system, in Proc. IX Int. Conf. on the Physics of Semiconductors, Moscow, 1968, 1 (Nauka, Leningrad, 1968), pp. 504–510

    Google Scholar 

  14. Z.I. Alferov, V.M. Andreev, E.L. Portnoy, M.K. Trukan, AlAs-GaAs heterojunctions injection lasers with a low room-temperature threshold. Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969) [Sov. Phys. Semicond. 3, 1107–1110 (1970)]

    Google Scholar 

  15. I. Hayashi, Heterostructure lasers. IEEE Trans. Electron Devices ED-31, 1630–1645 (1984)

    Article  Google Scholar 

  16. Z.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Y.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, V.G. Trofim, Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at the room temperature. Fiz. Tekh. Poluprovodn. 4, 1826–1829 (1970) [Sov. Phys. Semicond. 4, 1573–1575 (1971)]

    Google Scholar 

  17. I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski, Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109–111 (1970)

    Article  ADS  Google Scholar 

  18. Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoi, A.A. Yakovenko, Spontaneous radiation sources based on structures with AlAs-GaAs heterojunctions. Fiz. Tekh. Poluprovodn. 3, 930–933 (1969) [Sov. Phys. Semicond. 3, 785–787 (1970)]

    Google Scholar 

  19. Z.I. Alferov, V.M. Andreev, M.B. Kagan, I.I. Protasov, V.G. Trofim, Solar-energy converters based on p-n AlxGa1−xAs-GaAs heterojunctions. Fiz. Tekh. Poluprovodn. 4, 2378–2379 (1970) [Sov. Phys. Semicond. 4, 2047–2048 (1971)]

    Google Scholar 

  20. Z.I. Alferov, F.A. Ahmedov, V.I. Korol’kov, V.G. Nikitin, Phototransistor utilizing a GaAs-AlAs heterojunction. Fiz. Tekn. Poluprovodn. 7, 1159–1163 (1973) [Sov. Phys. Semicond. 7, 780–782 (1973)]

    Google Scholar 

  21. Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, V.G. Nikitin, A.A. Yakovenko, p-n-p-n structures based on GaAs and on AlxGa1−x As solid solutions. Fiz. Tekn. Poluprovodn. 4, 578–581 (1970) [Sov. Phys. Semicond. 4, 481–483 (1971)]

    Google Scholar 

  22. Z.I. Alferov, V.M. Andreev, S.G. Konnikov, V.G. Nikitin, D.N. Tret’yakov, Heterojunctions on the base of III-V semiconducting and of their solid solutions, in Proc. Int. Conf. Phys. Chem. Semicond. Heterojunctions and Layer Structures, Budapest, 1970, 1, ed. by G. Szigeti (Academiai Kiado, Budapest, 1971), pp. 93–106

    Google Scholar 

  23. G.A. Antipas, R.L. Moon, L.W. James, J. Edgecumbe, R.L. Bell, In Gallium Arsenide and Related Compounds. Conf. Ser. IOP 17, 48 (1973)

    Google Scholar 

  24. A.P. Bogatov, L.M. Dolginov, L.V. Druzhinina, P.G. Eliseev, L.N. Sverdlova, E.G. Shevchenko, Heterolasers on the base of solid solutions GaxIn1−xAsyP1−y and AlxGa1−xSbyAs1−y. Kvantovaya Electron. 1, 2294 (1974) [Sov. J. Quantum Electron 1, 1281 (1974)]

    Google Scholar 

  25. Z.I. Alferov, I.N. Arsent’ev, D.Z. Garbuzov, S.G. Konnikov, V.D. Rumyantsev, Generation of coherent radiation in pGa0.5In0.5P-pGax∼0.55In1−xAsy∼0.10P1−y−nGa0.5In0.5P. Pisma Zh. Tech. Fiz. 1, 305–310 (1975) [Sov. Phys. Tech. Phys. Lett. 1, 147–148 (1975)]

    Google Scholar 

  26. D. Flood, H. Brandhorst, Space solar cells, in Current Topics in Photovoltaics, vol. 2, ed. by T.J. Coutts, J.D. Meakin (Academic, New York, 1987), pp. 143–202

    Google Scholar 

  27. S.G. Bailey, D.J. Flood, Space Photovoltaics. Prog. Photovolt.: Res. Appl. 6(1), 1–14 (1998)

    Article  Google Scholar 

  28. V.M. Andreev, V.A. Grilikhes, V.D. Rumyantsev, Photovoltaic Conversion of Concentrated Sunlight (Wiley, New York, 1997)

    Google Scholar 

  29. H.J. Hovel, J.M. Woodall, High-efficiency AlGaAs-GaAs solar cells. Appl. Phys. Lett. 21, 379–381 (1972)

    Article  ADS  Google Scholar 

  30. V.M. Andreev, T.M. Golovner, M.B. Kagan, N.S. Koroleva, T.A. Lubochevskaya, T.A. Nuller, D.N. Tret’yakov, Investigation of high efficiency AlGaAs-GaAs solar cells. Sov. Phys. Semicond. 7(12) (1973)

    Google Scholar 

  31. Z.I. Alferov, V.M. Andreev, G.S. Daletskii, M.B. Kagan, N.S. Lidorenko, V.M. Tuchkevich, Investigation of high efficiency AlAs-GaAs heteroconverters, in Proc. World Electrotechn. Congress, Moscow, 1977, Section 5A, report 04

    Google Scholar 

  32. H.J. Hovel, Semiconductors and Semimetals, ed. by Willardson, R.K., Beer, A.C. Solar Cells, vol. 11 (Academic, New York, 1975)

    Google Scholar 

  33. V.M. Andreev, III-V heterostructure photovoltaics in Russia, in Proceedings of 17th European Photovoltaic Solar Energy Conference, 2000, pp. xxxi–xxxii

    Google Scholar 

  34. J.M. Woodall, H.J. Hovel, An isothermal etchback-regrowth method for high efficiency Ga1−xAlxAs-GaAs solar cells. Appl. Phys. Lett. 30, 492–493 (1977)

    Article  ADS  Google Scholar 

  35. V.M. Andreev, V.R. Larionov, V.D. Rumyantsev, O.M. Fedorova, S.S. Shamukhamedov, P AlGaAs-pGaAs-nGaAs solar cells with efficiencies of 19% at AM0 and 24% at AM1.5. Sov. Tech. Phys. Lett. 9(10), 537–538 (1983)

    Google Scholar 

  36. H.J. Hovel, Novel materials and devices for sunlight concentrating systems. IBM J. Res. Dev. 22, 112–121 (1978)

    Article  Google Scholar 

  37. E. Fanetti, C. Flores, G. Guarini, F. Paletta, D. Passoni, High efficiency 1.43 and 1.69 eV band gap Ga1−x AlxAs-GaAs solar cells for multicolor applications. Solar cells 3, 187–194 (1981)

    Article  ADS  Google Scholar 

  38. R.C. Knechtly, R.Y. Loo, G.S. Kamath, High-efficiency GaAs solar cells. IEEE Trans. Electron Dev. ED-31(5), 577–588 (1984)

    Article  Google Scholar 

  39. H.S. Rauschenbach, Solar Cell array Design Handbook. The Principles and Technology of Photovoltaic Energy Conversion (Litton Educational Publishing, New York, 1980)

    Google Scholar 

  40. A. Luque, Solar Cells and Optics for Photovoltaic Concentration (Adam Hilger, Bristol, 1989)

    Google Scholar 

  41. L.D. Partain (ed.), Solar Cells and Their Application (Wiley, New York, 1995)

    Google Scholar 

  42. P.A. Iles, Future of photovoltaic for space applications. Prog. Photovolt.: Res. Appl. 8, 39–51 (2000)

    Article  Google Scholar 

  43. V.M. Andreev, A.B. Kazantsev, V.P. Khvostikov, E.V. Paleeva, V.D. Rumyantsev, M.Z. Shvarts, High-efficiency (24.6%, AM0) LPE grown AlGaAs/GaAs concentrator solar cells and modules, in Conf. Record First World Conference on Photovoltaic Energy Conversion, 1994, pp. 2096–2099

    Google Scholar 

  44. V.M. Andreev, V.D. Rumyantsev, A3B5 based solar cells and concentrating optical elements for space PV modules. Solar Energy Mater. Solar Cells 44, 319–332 (1996)

    Article  Google Scholar 

  45. R.D. Dupuis, P.D. Dapkus, R.D. Vingling, L.A. Moundy, High-efficiency GaAlAs/GaAs heterostructure solar cells grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 31, 201–203 (1977)

    Article  ADS  Google Scholar 

  46. N.J. Nelson, K.K. Jonson, R.L. Moon, H.A. Vander Plas, L.W. James, Organometallicsourced VPE AlGaAs/GaAs concentrator solar cells having conversion efficiencies of 19%. Appl. Phys. Lett. 33, 26–27 (1978)

    Article  ADS  Google Scholar 

  47. J.G. Werthen, G.F. Virshup, C.W. Ford, C.R. Lewis, H.C. Hamaker, 21% (one sun, air mass zero) 4 cm2 GaAs space solar cells. Appl. Phys. Lett. 48, 74–75 (1986)

    Article  ADS  Google Scholar 

  48. S.P. Tobin, S.M. Vernon, S.J. Woitczuk, C. Baigar, M.M. Sanfacon, T.M. Dixon, Advanced in high-efficiency GaAs solar cells, in Conf. Record 21st IEEE Photovoltaic Specialists Conference, 1990, pp. 158–162

    Google Scholar 

  49. S.P. Tobin, S.M. Vernon, M.M. Sanfacon, A. Mastrovito, Enhanced light absorption in GaAs solar cells with internal Bragg reflector, in Conf. Record 22nd IEEE Photovoltaic Spesialists Conference, 1991, pp. 147–152

    Google Scholar 

  50. V.M. Andreev, V.V. Komin, I.V. Kochnev, V.M. Lantratov, M.Z. Shvarts, High-efficiency AlGaAs-GaAs solar cells with internal Bragg reflector, in Conf. Record First World Conference on Photovoltaic Energy Conversion, 1994, pp. 1894–1897

    Google Scholar 

  51. M.Z. Shvarts, O.I. Chosta, I.V. Kochnev, V.M. Lantratov, V.M. Andreev, Radiation resistant AlGaAs/GaAs concentrator solar cells with internal Bragg reflector. Solar Energy Mater. Solar Cells 68, 105–122 (2001)

    Article  Google Scholar 

  52. M. Yamaguchi, Space solar cell R&D activities in Japan, in Proceeding 15th Space Photovoltaic Research and Technology, 1997, pp. 1–10

    Google Scholar 

  53. C.C. Fan, B.-Y Tsaur, B.J. Palm, Optimal design of high-efficiency tandem cells, in Conf. Record 16th IEEE Photovoltaic Specialists Conf., 1982, pp. 692–698

    Google Scholar 

  54. M.A. Green, Solar Cells (Prentice-Hall, New Jersey, 1982)

    Google Scholar 

  55. M.F. Lamorte, D.H. Abbott, Computer modeling of a two-junction, monolithic cascade solar cell. IEEE Trans. Electron. Dev. ED-27, 231–249 (1980)

    Article  ADS  Google Scholar 

  56. M.B. Spitzer, C.C. Fan, Multijunction cells for space applications. Solar Cells 29, 183–203 (1990)

    Article  Google Scholar 

  57. L.M. Fraas, High-efficiency III-V multijunction solar cells, in Solar Cells and Their Applications, ed. by L.D. Partain (Wiley, New York, 1995), pp. 143–162

    Google Scholar 

  58. R.K. Jain, D.J. Flood, Monolithic and mechanical multijunction space solar cells. J. Solar Energy Eng. 115, 106–111 (1993)

    Article  ADS  Google Scholar 

  59. L.M. Fraas, J.E. Avery, J. Martin, V.S. Sundaram, G. Giard, V.T. Dinh, T.M. Davenport, J.W. Yerkes, M.J. O’Neil, Over 35-percent efficient GaAs/GaSb tandem solar cells. IEEE Trans. Electron. Dev. 37, 443–449 (1990)

    Article  ADS  Google Scholar 

  60. S.R. Kurtz, D. Myers, J.M. Olson, Projected performance of three-and four-junction devices using GaAs and GaInP, in Proc. 26th IEEE Photovoltaic Specialists Conf., 1997, pp. 875–878

    Google Scholar 

  61. M. Yamaguchi, Multi-junction solar cells: present and future, in Technical Digest 12th International Photovoltaic Solar Energy Conference, 2001, pp. 291–294

    Google Scholar 

  62. A.W. Bett, F. Dimroth, G. Stollwerk, O.V. Sulima, III-V compounds for solar cell applications. Appl. Phys. A69, 119–129 (1999)

    ADS  Google Scholar 

  63. M. Yamaguchi, A. Luque, High efficiency and high concentration in photovoltaics. IEEE Trans. Electron Devices 46(10), 41–46 (1999)

    Google Scholar 

  64. M.W. Wanlass, J.S. Ward, K.A. Emery, T.A. Gessert, C.R. Osterwald, T.J. Coutts, High performance concentrator tandem solar cells based on IR-sensitive bottom cells. Solar Cells 30, 363–371 (1991)

    Article  Google Scholar 

  65. V.M. Andreev, L.B. Karlina, A.B. Kazantsev, V.P. Khvostikov, V.D. Rumyantsev, S.V. Sorokina, M.Z. Shvarts, Concentrator tandem solar cells based on AlGaAs/GaAs-InP/InGaAs (or GaSb) structures, in Conf. Record First World Conference on Photovoltaic Energy Conversion, 1994, pp. 1721–1724

    Google Scholar 

  66. V.M. Andreev, V.P. Khvostikov, E.V. Paleeva, V.D. Rumyantsev, S.V. Sorokina, M.Z. Shvarts, V.I. Vasil’ev, Tandem solar cells based on AlGaAs/GaAs and GaSb structures, in Proc. 23d International Symposium on Compound Semiconductors, 1996, pp. 425–428

    Google Scholar 

  67. V.M. Andreev, R&D of III-V compound solar cells in Russia, in Technical Digest of 11th International Photovoltaic Solar Energy Conference, 1999, pp. 589–592

    Google Scholar 

  68. M. Umeno, T. Kato, M. Yang, Y Azuma, T. Soga, T. Jimbo, High efficiency AlGaAs/Si tandem solar cell over 20%, in Conf. Record First World Conference on Photovoltaic Energy Conversion, 1994, pp. 1679–1684

    Google Scholar 

  69. B.-C. Chung, G.F. Virshup, M. Ladle Ristow, M.W. Wanlass, 25.2%-efficiency (1-sun, air mass 0) AlGaAs/GaAs/InGaAsP three-junction, two-terminal solar cells, in Conf. Record 22nd IEEE Photovoltaic Specialists Conference, 1991, pp. 54–57

    Google Scholar 

  70. V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, E.V. Paleeva, M.Z. Shvarts, Monolithic two-junction AlGaAs/GaAs solar cells, in Proc. 26th IEEE Photovoltaic Specialists Conference, 1997, pp. 927–930

    Google Scholar 

  71. M.L. Timmons, J.A. Hutchley, D.K. Wagner, J.M. Tracy, Monolithic AlGaAs/Ge cascade cell, in Proc. of 21st IEEE Photovoltaic Specialists Conference, 1988, pp. 602–606

    Google Scholar 

  72. S.P. Tobin, S.M. Vernon, C. Bajgar, V.E. Haven, L.M. Geoffroy, M.M. Sanfacon, D.R. Lillington, R.E. Hart, K.A. Emery, R.L. Matson, High efficiency GaAs/Ge monolithic tandem solar cells, in Proc. 20th IEEE Photovoltaic Specialists Conference, 1988, pp. 405–410

    Google Scholar 

  73. P.A. Iles, Y.-C.M. Yeh, F.N. Ho, C.L. Chu, C. Cheng, High-efficiency (>20% AM0) GaAs solar cells grown on inactive Ge substrates. IEEE Electron Device Lett. 11(4), 140–142 (1990)

    Article  ADS  Google Scholar 

  74. S. Wojtczuk, S. Tobin, M. Sanfacon, V. Haven, L. Geoffroy, S. Vernon, Monolithic twoterminal GaAs/Ge tandem space concentrator cells, in 22nd IEEE Photovoltaic Specialists Conference, 1991, pp. 73–79

    Google Scholar 

  75. P.A. Iles, Y.-C.M. Yeh, Silicon, gallium arsenide and indium phosphide cells: single junction, one sun space, in Solar Cells and Their Applications, ed. by L.D. Partain (Wiley, New York, 1995), pp. 99–121

    Google Scholar 

  76. J.M. Olson, S.R. Kurtz, A.E. Kibbler, P. Faine, Recent advances in high efficiency GaInP2/GaAs tandem solar cells, in Proc. 21st IEEE Photovoltaic Specialists Conference, 1990, pp. 24–29

    Google Scholar 

  77. K.A. Bertness, S.R. Kurtz, D.J. Friedman, A.E. Kibbler, C. Kramer, J.M. Olson, High-efficiency GaInP/GaAs tandem solar cells for space and terrestrial applications, in Conf. Record First World Conference on Photovoltaic Energy Conversion, 1994, pp.1671–1678

    Google Scholar 

  78. P.K. Chiang, D.D. Krut, B.T. Cavicchi, K.A. Bertness, S.R. Kurtz, J.M. Olson, Large area GaInP/GaAs/Ge multijunction solar cells for space application, in Conf. Record First World Conference on Photovoltaic Energy Conversion, 1994, pp. 2120–2123

    Google Scholar 

  79. P.K. Chiang, J.H. Ermer, W.T. Niskikawa, D.D. Krut, D.E. Joslin, J.W. Eldredge, B.T. Cavicchi, Experimental results of GaInP2/GaAs/Ge triple junction cell development for space power systems, in Conf. Record 25th IEEE Photovoltaic Specialists Conference, 1996, pp. 183–186

    Google Scholar 

  80. R.R. King, N.H. Karam, J.H. Ermer, M. Haddad, P. Colter, T. Isshiki, H. Yoon, H.L. Cotal, D.E. Joslin, D.D. Krut, R. Sudharsanan, K. Edmondson, B.T. Cavicchi, D.R. Linington, Next-generation, high-efficiency III-V multijunction solar cells, in Proceedings of 28th IEEE Photovoltaic Specialists Conference, 2000, pp. 998–1005

    Google Scholar 

  81. R.R. King, C.M. Fetzer, P.C. Colter, K.M. Edmondson, J.H. Ermer, H.L. Cotal, H. Yoon, A.P. Stavrides, G. Kinsey, D.D. Krut, N.H. Karam, High-efficiency space and terrestrial multijunction solar cells trough bandgap control in cell structures, in Proc. 29th IEEE Photovoltaic Specialists Conference, 2002, pp. 776–779

    Google Scholar 

  82. R.R. King, R.A. Sherif, D.C. Law, J.T. Yen, M. Haddad, C.M. Fetzer, K.M. Edmondson, G. Kinsey, H. Yoon, M. Joshi, S. Mesropian, New horizons in III-V multijunction terrestrial concentrator cells research, in Proceedings of 21st European Photovoltaic Solar Energy Conference, Dresden, 2006, pp. 124–128

    Google Scholar 

  83. P.K. Chiang, C.L. Chu, Y.C.M. Yeh, P. Iles, G. Chen, J. Wei, P. Tsung, J. Olbinski, J. Krogen, S. Halbe, S. Khemthong, Achieving 26% triple junction cascade solar cell production, in Proc. 28th IEEE Photovoltaic Specialists Conference, 2000, pp. 1002–1005

    Google Scholar 

  84. H.Q. Hou, P.R. Sharps, N.S. Fatemi, N. Li, M.A. Stan, P.A. Martin, B.E. Hammons, F. Spadafora, Very high efficiency InGaP/GaAs dual-junction solar cell manufacturing at Emcore Photovoltaics, in Proc. 28th IEEE Photovoltaic Specialists Conference, 2000, pp. 1173–1176

    Google Scholar 

  85. A.W. Bett, F. Dimroth, G. Lange, M. Meusel, R. Beckert, M. Hein, S.V. Riesen, U. Schubert, 30% monolithic tandem concentrator solar cells for concentrations exceeding 1000 suns, in Proc. 28th IEEE Photovoltaic Specialists Conference, 2000, pp. 961–964

    Google Scholar 

  86. F. Dimroth, U. Schubert, A.W. Bett, J. Hilgarth, M. Nell, G. Strobl, K. Bogus, C. Signorini, Next generation GaInP/GaInAs/Ge multijunction space solar cells, in Proc. 17th European Photovoltaic Specialists Conference, 2001, pp. 2150–2154

    Google Scholar 

  87. R.R. King, M. Haddad, T. Isshiki, P. Colter, J. Ermer, H. Yoon, D.E. Joslin, N.H. Karam, Metamorphic GaInP/GaInAs/Ge solar cells, in Proc. 28th IEEE Photovoltaic Specialists Conference, 2000, pp. 982–985

    Google Scholar 

  88. M.A. Green, K. Emery, D.L. King, Y. Nishikawa, W. Warta, Solar cell efficiency tables (version 29). Prog. Photovolt.: Res. Appl. 15, 35–40 (2007)

    Article  Google Scholar 

  89. V.M. Andreev, A.B. Kazantsev, V.P. Khvostikov, E.V. Paleeva, V.D. Rumyantsev, M.Z. Shvarts, High-efficiency (24.6%, AMO) LPE grown AlGaAs/GaAs concentrator solar cells and modules, in Proceedings of 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 1994, pp. 2096–2099

    Google Scholar 

  90. S.G. Bailey, D.J. Flood, Space photovoltaics. Prog. Photovolt.: Res. Appl. 6, 1–14 (1998)

    Article  Google Scholar 

  91. C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, P. Pena, V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, A GaAs solar cell with efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Trans. Electron Devices 48(5), 840–844 (2001)

    Article  ADS  Google Scholar 

  92. V.M. Andreev, V.P. Khvostikov, V.R. Larionov, V.D. Rumyantsev, E.V. Paleeva, M.Z. Shvarts, C. Algora, 5800 Suns AlGaAs/GaAs concentrator solar cells, in Technical Digest of the International Photovoltaic Science and Engineering Conference, Sapporo, Japan, 1999, pp. 147–148

    Google Scholar 

  93. M.Z. Shvarts, O.I. Chosta, I.V. Kochnev, V.M. Lantratov, V.M. Andreev, Radiation resistant AlGaAs/GaAs concentrator solar cells with internal Bragg reflector. Solar Energy Mater. Solar Cells 68, 105–122 (2001)

    Article  Google Scholar 

  94. V.M. Andreev, I.V. Kochnev, V.M. Lantratov, S.A. Mintairov, V.D. Rumyantsev, M.Z. Shvarts, Ultra-violet sensitive infra-red reflective AlGaAs/GaAs solar cells with two Bragg reflectors, in Proc. of the 16th European Photovoltaic Solar Energy Conference, Glasgow, 2000, pp. 1019–1021

    Google Scholar 

  95. M.W. Wanlass, J.S. Ward, K.A. Emery, T.A. Gessert, C.R. Osterwald, T.J. Coutts, High performance concentrator tandem solar cells based on IR-sensitive bottom cells. Solar Cells 30, 363–371 (1991)

    Article  Google Scholar 

  96. B.-C. Chung, G.F. Virshup, S. Hikido, N.R. Kaminar, 27.6% efficiency (1 sun, air mass 1.5) monolithic Al0.37Ga0.63As/GaAs two junction cascade solar cell with prismatic cover glass. Appl. Phys. Lett. 55, 1741–1743 (1989)

    Google Scholar 

  97. V.M. Andreev, V.P. Khvostikov, E.V. Paleeva, V.D. Rumyantsev, S.V. Sorokina, M.Z. Shvarts, V.I. Vasil’ev, Tandem solar cells based on AlGaAs/GaAs and GaSb structures, in Proc. 23rd International Symposium on Compound Semiconductors, St. Petersburg, Russia, Sept. 23–27, 1996

    Google Scholar 

  98. D.J. Friedman, S.R. Kurtz, K.A. Bertness, A.E. Kibbler, C. Kramer, J.M. Olson, D.L. King, B.R. Hansen, J.K. Snyder, GaInP/GaAs monolithic tandem concentrator cells, in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, USA, 1994, pp. 1829–1832

    Google Scholar 

  99. R.R. King, D.C. Law, C.M. Fetzer, R.A. Sherif, K.M. Edmondson, S. Kurtz, G.S. Kinsey, H.L. Cotal, D.D. Krut, J.H. Ermer, N.H. Karam, Pathways to 40%-efficient concentration photovoltaics, in Proc. 20th European PVSEC, Barcelona, Spain, 2005, pp. 6–10

    Google Scholar 

  100. F. Dimroth, R. Beckert, M. Meusel, U. Schubert, A.W. Bett, Metamorphic GayIn1−yP/Ga1−1InxAs tandem solar cells for space and for terrestrial concentrator applications at C > 1000 suns. Prog. Photovolt.: Res. Appl. 9(3), 165–178 (2001)

    Article  Google Scholar 

  101. D.J. Aiken, M.A. Stan, S.P. Endicter, G. Girard, P.R. Sharps, A loss analysis for a 28% efficient 520x concentrator module, in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 7–12 May 2006, pp. 686–689

    Google Scholar 

  102. M. Yamaguchi, Y Okada, A. Yamamoto, T. Takamoto, K. Araki, Y. Ohshita, Novel materials and structures for high efficiency multi-junction solar cells, in Proceedings at the 21st European Photovoltaic Solar Energy Conference, Dresden, 2006, pp. 53–56

    Google Scholar 

  103. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, D.D. Krut, J.H. Ermer, R.A. Sherif, N.H. Karam, Metamorphic concentrator solar cells with over 40% conversion efficiency, in Proceedings for 4th International Conference on Solar Concentrators (ICSC-4), El Escorial, Spain, 2007, pp. 5–8

    Google Scholar 

  104. M.Z. Shvarts, P.Y. Gazaryan, V.P. Khvostikov, V.M. Lantratov, N.K. Timoshina, InGaP/GaAs-GaSb and InGaP/GaAs/Ge-InGaAsSb hybrid monolithic/stacked tandem concentrator solar cells, in Proceedings at the 21st European Photovoltaic Solar Energy Conference, Dresden, 2006, pp. 133–136

    Google Scholar 

  105. V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, O.A. Khvostikova, P.Y. Gazaryan, A.S. Vlasov, N.A. Sadchikov, S.V. Sorokina, Y.M. Zadiranov, M.Z. Shvarts, Termophotovoltaic converters with solar powered high temperature emitters, in Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, June 2005, pp. 8–13

    Google Scholar 

  106. V.M. Andreev, A.S. Vlasov, V.P. Khvostikov, O.A. Khvostikova, P.Y. Gazaryan, N.A. Sadchikov, Sun powered TPV converters based on GaSb cells, in Proceedings at the 21st European Photovoltaic Solar Energy Conference, Dresden, 2006, pp. 35–38

    Google Scholar 

  107. L.W. Fraas, W.E. Daniels, H.X. Huang, L.E. Minkin, J.E. Avery, M.J. O’Neill, A.J. McDanal, M.F. Piszczor, 34% efficient InGaP/GaAs/GaSb cell-interconnected-circuits for line-focus concentrator arrays, in Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, 2000, pp. 2300–2303

    Google Scholar 

  108. V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, S.V. Sorokina, M.Z. Shvarts, Singlejunction GaSb and tandem GaSb/InGaAsSb & AlGaAsSb/GaSb thermophotovoltaic cells, in Proc. of the 28th IEEE PVSC, Alaska, September, 2000, pp. 1265–1268

    Google Scholar 

  109. V.M. Andreev, E.A. Ionova, V.R. Larionov, V.D. Rumyantsev, M.Z. Shvarts, G. Glenn, Tunnel diode revealing peculiarities at I-V measurements in multijunction III-V solar cells, in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 2006, pp. 799–802

    Google Scholar 

  110. Z.I. Alferov, V.M. Andreev, V.D. Rumyantsev, III-V heterostructures in photovoltaics, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130 (2007)

    Google Scholar 

  111. A.W. Bett, F. Dimroth, G. Siefer, Multi-Junction concentrator solar cells, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130 (2007)

    Google Scholar 

  112. M. Yamaguchi, K. Araki, T.T. Takamoto, Concentrator solar cell modules and systems developed in Japan, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130 (2007)

    Google Scholar 

  113. N.H. Karam, R.A. Sherif, R.R. King, Multijunction concentrator solar cells, an enabler for low-cost concentrating photovoltaic systems, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130 (2007)

    Google Scholar 

  114. M. Yamaguchi, K. Araki, T.T. Takamoto, Concentrator solar cell modules and systems developed in Japan, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130 (2007)

    Google Scholar 

  115. G. Sala, A. Luque, Past experiences and new challenges of PV concentrators, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130 (2007)

    Google Scholar 

  116. V.D. Rumyantsev, Terrestrial concentrator PV systems, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130 (2007)

    Google Scholar 

  117. Z.I. Alferov, V.M. Andreev, Kh.K. Aripov, V.R. Larionov, V.D. Rumyantsev, Pattern of autonomous solar installation with heterostructure solar cells and concentrators. Geliotechnica 2, 3–6 (1981). Appl. Solar Energy, 2 (1981)

    ADS  Google Scholar 

  118. Z.I. Alferov, V.M. Andreev, Kh.K. Aripov, V.R. Larionov, V.D. Rumyantsev, Solar Photovoltaic installation with 200 Watt output based on AlGaAs-heterophotocells and reflective concentrators. Geliotechnika 6, 3–6 (1981). Appl. Solar Energy, 6 (1981)

    ADS  Google Scholar 

  119. A.A. Vodnev, A.V. Maslov, V.D. Rumyantsev, Sh.Sh. Shamukhamedov, Experience on creation of the solar installations based on AlGaAs/GaAs-photocells with concentrators, in Sunlight Concentrators for Photovoltaic Power Installations, ed. by V.A. Grilikhes, Leningrad, Energoatomizdat, 1986, pp. 25–29 (in Russian)

    Google Scholar 

  120. V.M. Andreev, A.A. Alaev, A.B. Guchmazov, V.S. Kalinovsky, V.R. Larionov, K.Y. Rasulov, V.D. Rumyantsev, High-efficiency AlGaAs-heterophotocells operating with lens panels as the solar energy concentrators, in Proc. of the all-Union Conference “Photovoltaic phenomena in semiconductors”, Tashkent, 1989, pp. 305–306 (in Russian)

    Google Scholar 

  121. V.M. Andreev, V.R. Larionov, V.D. Rumyantsev, M.Z. Shvarts, High-efficiency solar concentrating GaAs-AlGaAs modules with small-size lens units, in 11th European Photovoltaic Solar Energy Conference and Exhibition —Book of Abstracts; abstract No. 1A. 15, Montreux, Switzerland, 12–16 October, 1992

    Google Scholar 

  122. Project: INTAS96-1887, 1997–2000 years, Photovoltaic installation with sunlight concentrators. Final Report, 2000

    Google Scholar 

  123. V.D. Rumyantsev, M. Hein, V.M. Andreev, A.W. Bett, F. Dimroth, G. Lange, G. Letay, M.Z. Shvarts, O.V. Sulima, Concentrator array based on GaAs cells and Fresnel lens concentrators, in Proceedings of the 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, United Kingdom, 1–5 May 2000

    Google Scholar 

  124. V.D. Rumyantsev, V.M. Andreev, A.W. Bett, F. Dimroth, M. Hein, G. Lange, M.Z. Shvarts, O.V. Sulima, Progress in development of all-glass terrestrial concentrator modules based on composite Fresnel lenses and III-V solar cells, in Proceedings of the 28th PVSC, Anhorage, Alaska, 2000, pp. 1169–1172

    Google Scholar 

  125. A.W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. vanRiesen, G. Siefer, V.M. Andreev, V.D. Rumyantsev, N.A. Sadchikov, FLATCO™ — modules: technology and characterization, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion 3O-D9-05, 2003

    Google Scholar 

  126. V.M. Andreev, E.A. Ionova, V.D. Rumyantsev, N.A. Sadchikov, M.Z. Shvarts, Concentrator PV modules of “all-glass“ design with modified structure, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion 3P-C3-72, 2003

    Google Scholar 

  127. Z.I. Alferov, V.D. Rumyantsev, Trends in the development of solar photovoltaics, in Next Generation Photovoltaics, IoP, 2004, pp. 19–49

    Google Scholar 

  128. V.D. Rumyantsev, N.A. Sadchikov, A.E. Chalov, E.A. Ionova, D.J. Friedman, G. Glenn, Terrestrial concentrator PV modules based on GaInP/GaAs/Ge TJ cells and minilens panels, in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 2006, pp. 632–635

    Google Scholar 

  129. V.D. Rumyantsev, A.E. Chalov, E.A. Ionova, V.R. Larionov, N.A. Sadchikov, V.M. Andreev, Practical design of PV modules t for very high solar concentration, in Proc. on CD of the Third Int. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen, Scottsdale, Arizona, May 2005

    Google Scholar 

  130. V.D. Rumyantsev, N.A. Sadchikov, A.E. Chalov, E.A. Ionova, V.R. Larionov, V.M. Andreev, G.R. Smekens, E.W. Merkle, Pilot installation with “all-glass” concentrator PV modules, in Proceedings at the 21st European Photovoltaic Solar Energy Conference, Dresden, 2006, pp. 2097–2100

    Google Scholar 

  131. V.D. Rumyantsev, A.E. Chalov, N.Y. Davidyuk, E.A. Ionova, N.A. Sadchikov, V.M. Andreev, Solar concentrator modules with fresnel lens panels, in Proc. of the Fourth Int. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen, El Escorial, Spain, 2007, pp. 33–36

    Google Scholar 

  132. P.A. Davies, A. Luque, Solar thermophotovoltaics: brief review and a new look. Solar Energy Mater. Solar Cells 33, 11–22 (1994)

    Article  Google Scholar 

  133. V. Andreev, V. Khvostikov, A. Vlasov, Solar thermophotovoltaics, in Concentrator Photovoltaics, ed. by A. Luque and V. Andreev. Springer Series in Optical Sciences, vol. 130, 2007

    Google Scholar 

  134. V.M. Andreev, V.A. Grilikhes, V.P. Khvostikov, O.A. Khvostikova, V.D. Rumyantsev, N.A. Sadchikov, M.Z. Shvarts, Concentrator PV modules and solar cells for TPV systems. J. Solar Energy Mater. Solar Cells 84, 3–17 (2004)

    Article  Google Scholar 

  135. Z.I. Alferov, V.M. Andreev, Yu.M. Zadiranov, V.I. Korol’kov, N. Rahimov, T.S. Tabarov, Photo-EMF in AlxGa1−xAs graded band-gap heterostructures. Pisma Z. Tech. Fiz. 4, 369–372 (1978) [Sov. Tech. Phys. Lett. 4(4), 149–150 (1978)]

    Google Scholar 

  136. Z.I. Alferov, A.M. Vasiliev, S.V. Ivanov, P.S. Kop’ev, N.N. Ledentsov, M.E. Lutsenko, B.Y. Melser, V.M. Ustinov, Reducing the threshold in GaAs-AlGaAs DHS SCH quantum well lasers (jth = 52 A/cm2, T = 300 K) with quantum well restriction by short period superlattice of variable period. Pisma Z. Techn. Fiz. 14, 1803–1806 (1988) [Sov. Tech. Phys. Lett. 14, 782 (1988)]

    Google Scholar 

  137. Z.I. Alferov, N.A. Bert, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, A.O. Kosogov, I.L. Krestnikov, N.N. Ledentsov, A.V. Lunev, M.V. Maksimov, A.V. Sakharov, V.M. Ustinov, A.F. Tsatsul’nikov, Y.M. Shernyakov, D. Bimberg, An injection heterojunction laser based on arrays of vertically coupled InAs quantum dots in a GaAs matrix. Fiz. Tekh. Poluprovodn. 30, 351–356 (1996) [Semiconductors, 30, 194–196 (1996)]

    Google Scholar 

  138. A. Marti, L. Guadra, A. Luque, Intermediate-band solar cells, in Next Generation Photovoltaics. High Efficiency trough Full Spectrum Utilization, ed. by A. Marti, A. Luque (Institute of Physics, Bristol, 2004), pp. 140–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alferov, Z.I., Andreev, V.M., Rumyantsev, V.D. (2009). III-V Solar Cells and Concentrator Arrays. In: Petrova-Koch, V., Hezel, R., Goetzberger, A. (eds) High-Efficient Low-Cost Photovoltaics. Springer Series in Optical Sciences, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79359-5_8

Download citation

Publish with us

Policies and ethics