Skip to main content

Optical Configurations for Imaging Spectrometers

  • Chapter
Computational Intelligence for Remote Sensing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 133))

Introduction

Imaging spectrometers or hyperspectral imagers are radiation sensors that provide a continuous collection of spectral images of an inhomogeneous scene, allowing to obtain a spectral signature of each point in the scene. They are applied to perform many different tasks such as accurate mapping of wide areas, object identification and recognition, target detection, process monitoring and control, clinical diagnosis imaging and environment assessment and management. Application areas include forestry, geology, agriculture, medicine, security, manufacturing, colorimetry, oceanography, ecology and others [1].

The simplest way to obtain information of a scene by optical means is taking a photograph. With a black and white photograph we get an irradiance map of the radiation reflected by each point in the scene. A colour photograph allows to get some spectral information corresponding to the superposition of the radiation reflected in three broad band of the spectrum, typically blue, green and red bands. Much more information can be obtained if the photographs are taken in tens or hundreds of different spectral bands. Imaging spectrometers do this work. They take separated images at narrow and contiguous spectral bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerekes, J.: Imaging spectrometers go commercial, pp. 63–68. Laser Focus World (July 2006)

    Google Scholar 

  2. Sellar, R.G., Boreman, G.D.: Classification of imaging spectrometers for remote sensing applications. Opt. Eng. 44, 1–3 (2005)

    Article  Google Scholar 

  3. Gat, N.: Imaging spectroscopy using tunable filters: a review. In: Proc. SPIE, vol. 4056, pp. 50–64 (2000)

    Google Scholar 

  4. Nieke, J., Schwarzer, H., Neumann, A., Zimmermann, G.: Imaging spaceborne and airborne sensor systems in the beginning of the next century. In: Proc. SPIE, vol. 3221, pp. 581–592 (1997)

    Google Scholar 

  5. Gao, G.H., Lin, Z.: Acousto-optic supermultispectral imaging. Appl. Opt. 32, 3081–3086 (1993)

    Article  Google Scholar 

  6. Gupta, N.: Remote sensing using hyperspectral and polarization images. In: Proc. SPIE, vol. 4574, pp. 184–192 (2002)

    Google Scholar 

  7. Vo-Dinh, T., Stokes, D.L., Wabuyele, M.B., Martin, M.E., Song, J.M., Jagannathan, R., Michaud, E., Lee, R.J., Pan, X.: A hyperspectral imaging system for in vivo optical diagnostics. IEEE Eng. Med. Biol. 23, 40–49 (2004)

    Article  Google Scholar 

  8. Gupta, N., Voloshinov, V.: Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter. Appl. Opt. 43, 2752–2759 (2004)

    Article  Google Scholar 

  9. Gupta, N., Voloshinov, V.: Hyperspectral imaging performance of a TeO2 acousto-optic tunable filter in the ultraviolet region. Opt. Lett. 30, 985–987 (2005)

    Article  Google Scholar 

  10. Miller, P.J., Hoyt, C.C.: Multispectral imaging with a liquid crystal tunable filter. In: Proc. SPIE, vol. 2345, pp. 354–365 (1995)

    Google Scholar 

  11. Koop, G.: Tunable birefringent filters using liquid crystal variable retarders. In: Proc. SPIE, vol. 2873, pp. 324–327 (1996)

    Google Scholar 

  12. Slawson, R.W., Ninkov, Z., Horch, E.P.: Hyperspectral imaging: wide-area spectrophotometry using a liquid crystal tunable filter. Publications of the Astronomical Society of the Pacific 111, 621–626 (1999)

    Article  Google Scholar 

  13. Yano, T., Watanabe, A.: Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction. Appl. Opt. 15, 2250–2258 (1976)

    Google Scholar 

  14. Glenar, D.A., Hilman, J., Saif, B., Bergstralh, J.: Acousto-optic imaging spectropolarimetry for remote sensing. Appl. Opt. 33, 7412–7424 (1994)

    Google Scholar 

  15. Evans, J.W.: The birefringent filter. JOSA 39, 229–242 (1949)

    Google Scholar 

  16. Evans, J.W.: Solc birefringent filter. JOSA 48, 142–145 (1958)

    Google Scholar 

  17. Daly, J.T., Bodkin, A., Schneller, W., Kerr, R., Noto, J., Haren, R., Eismann, M., Karch, B.: Tunable narrow band filter for LWIR hyperspectral imaging. In: Proc. SPIE, vol. 3948, pp. 104–115 (2000)

    Google Scholar 

  18. Knittl, Z.: Optics of thin films. John Wiley & Sons, London (1976)

    Google Scholar 

  19. Franon, M.: Sparation des radiations par les filters optiques. Masson, Paris (1984)

    Google Scholar 

  20. Mika, A.M.: Linear-wedge spectrometer. In: Proc. SPIE, vol. 1298, pp. 127–131 (1990)

    Google Scholar 

  21. Reuter, D.C., Jennings, D.E., McCabe, G.H., Travis, J.W., Bly, V.T., La, A.T., Nguyen, T.L., Jhabyala, M.D., Shu, P.K., Endres, R.D.: Hyperspectral sensing using the linear etalon imaging spectral array. In: Proc. SPIE, vol. 2957, pp. 154–161 (1997)

    Google Scholar 

  22. Wahl, J.A., Van Delden, J.S., Tiwary, S.: Tapered Fabry-Prot Filters. IEEE Phot. Tech. Lett. 16, 1873–1875 (2004)

    Article  Google Scholar 

  23. Czerny, M., Turner, A.F.: ber den Astigmatismus bei Spiegelspektrometern. Zeit. Phys. 61, 792–797 (1930)

    Article  Google Scholar 

  24. Smith, W.J.: Modern lens design. McGraw-Hill Professional, New York (2004)

    Google Scholar 

  25. Hutley, M.C.: Diffraction Gratings. Academic Press, London (1982)

    Google Scholar 

  26. Fisher, J., Baumback, M., Bowles, J., Grossmann, J., Antoniades, J.: Comparison of low-cost hyperspectral sensors. In: Proc. SPIE, vol. 3438, pp. 23–30 (1998)

    Google Scholar 

  27. Offner, A.: Annular field systems and the future of optical microlithography. Opt. Eng. 26, 294–299 (1987)

    Google Scholar 

  28. Mouroulis, P., Green, R.O., Chrien, T.G.: Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl. Opt. 39, 2210–2220 (2000)

    Article  Google Scholar 

  29. Chrisp, M.P.: Convex diffraction grating imaging spectrometer, US Patent 5,880,834 (1999)

    Google Scholar 

  30. Prieto-Blanco, X., Montero-Orille, C., Couce, B., de la Fuente, R.: Analytical design of an Offner imaging spectrometer. Opt. Express 14, 9156–9168 (2006)

    Article  Google Scholar 

  31. http://www.headwallphotonics.com

  32. Lobb, D.R.: Imaging spectrometer, WO Patent WO9837389 (1998)

    Google Scholar 

  33. Cutter, M.A., Lobb, D.R., Williams, T.L., Renton, R.E.: Integration & testing of the compact high-resolution imaging spectrometer (CHRIS). In: Proc. SPIE, vol. 3753, pp. 180–191 (1999)

    Google Scholar 

  34. Cutter, M.A.: Compact high-resolution imaging spectrometer (CHRIS) design and performance. In: Proc. SPIE, vol. 5546, pp. 126–131 (2004)

    Google Scholar 

  35. Aikio, M.: Optical component comprising prisms and a grating, WO Patent WO9321548 (1993)

    Google Scholar 

  36. Aikio, M.: Hyperspectral prism-grating-prism imaging spectrograph. VTT Publications, Technical research centre of Finland, Espoo (2001)

    Google Scholar 

  37. http://www.specim.fi

  38. Couce, B., Prieto-Blanco, X., Montero-Orille, C., de la Fuente, R.: A windowing/pushbroom hyperspectral imager. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 300–306. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  39. Descour, M.R., Volin, C.E., Dereniak, E.L., Gleeson, T.M., Hopkins, M.F., Wilson, D.W., Maker, P.D.: Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser. Appl. Opt. 36, 3694–3698 (1997)

    Article  Google Scholar 

  40. Volin, C.E., Garcia, J.P., Dereniak, E.L., Descour, M.R., Sass, D.T., Simi, C.G.: MWIR computed tomography imaging spectrometer: calibration and imaging experiments. In: Proc. SPIE, vol. 3753, pp. 192–202 (1999)

    Google Scholar 

  41. Ford, B.K., Volin, C.E., Murphy, S.M., Lynch, R.M., Descour, M.R.: Computed tomography-based spectral imaging for fluorescence microscopy. Biophys. J. 80, 986–993 (2001)

    Google Scholar 

  42. Johnson, W.R., Wilson, D.W., Bearman, G.: All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications. Opt. Lett. 30, 1464–1466 (2005)

    Article  Google Scholar 

  43. Born, M., Wolf, E.: Principles of optics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  44. Sellar, R.G., Boreman, G.D.: Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer. Appl. Opt. 44, 1614–1624 (2005)

    Article  Google Scholar 

  45. Swinyard, B.M., Dohlen, K., Ferand, D., Baluteau, J.P., Pouliquen, D., Dargent, P., Michel, G., Martignac, J., Ade, P., Hargrave, P.C., Griffin, M.J., Jennings, D.E., Caldwell, M.E.: Imaging FTS for Herschel SPIRE. In: Proc. SPIE, vol. 4850, pp. 698–709 (2003)

    Google Scholar 

  46. Naylor, D.A., Gom, B.G., Schofield, I., Tompkins, G., Davis, G.R.: Mach-Zenhder Fourier transform spectrometer for astronomical spectroscopy at submilimeter wavelengths. In: Proc. SPIE, vol. 4855, pp. 540–551 (2003)

    Google Scholar 

  47. Ferrec, Y., Taboury, J., Sauer, H., Chavel, P.: Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers. Opt. Eng. 45, 115601–115606 (2006)

    Article  Google Scholar 

  48. Farley, V., Belzile, C., Chamberland, M., Legault, J.F., Schwantes, K.: Development and testing of a hyper-spectral imaging instrument for field spectroscopy. In: Proc. SPIE, vol. 5546, pp. 29–36 (2004)

    Google Scholar 

  49. Harnisch, B., Posselt, W., Holota, K., Otto Tittel, H., Rost, M.: Compact Fourier-transform imaging spectrometer for small satellite missions. Acta Astronautica 52, 803–811 (2003)

    Article  Google Scholar 

  50. Sellar, R.G., Boreman, G.D.: Limiting aspect ratios of Sagnac interferometers. Opt. Eng. 42, 3320–3325 (2003)

    Article  Google Scholar 

  51. Barducci, A., Marcoionni, P., Pippi, I.: Spectral measurement with a new Fourier transform imaging spectrometer (FTIS). In: Geoscience and Remote Sensing Symposium (IGARSS 2003) Proc. IEEE Int., vol. 3, pp. 2023–2026 (2003)

    Google Scholar 

  52. Rafert, J.B., Sellar, R.G., Blatt, J.H.: Monolitic Fourier-transform imaging spectrometer. Appl. Opt. 34, 7228–7230 (1995)

    Google Scholar 

  53. Sellar, R.G., Rafert, J.B.: Fourier-transform imaging spectrometer with a single toroidal optic. Appl. Opt. 34, 2931–2933 (1995)

    Google Scholar 

  54. Sellar, R.G., Rafert, J.B.: Effects of aberrations on spatially modulated Fourier transform spectrometers. Opt. Eng. 42, 3087–3092 (1994)

    Article  Google Scholar 

  55. Tyo, J.S., Turner Jr., T.S.: Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing. Appl. Opt. 40, 1450–1458 (2001)

    Article  Google Scholar 

  56. Zhan, G., Oka, K., Ishigaki, T., Baba, N.: Birefringent imaging spectrometer. Appl. Opt. 41, 734–738 (2002)

    Article  Google Scholar 

  57. Zhang, C., Xiangli, B., Zhao, B., Yuan, X.: A static polarization imaging spectrometer based on a Savart polariscope. Opt. Commun. 203, 21–26 (2002)

    Article  Google Scholar 

  58. Harvey, A.R., Fletcher-Holmes, D.W.: Birefringent Fourier-transform imaging spectrometer. Opt. Express 12, 5368–5374 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Graña Richard J. Duro

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prieto-Blanco, X., Montero-Orille, C., Couce, B., de la Fuente, R. (2008). Optical Configurations for Imaging Spectrometers. In: Graña, M., Duro, R.J. (eds) Computational Intelligence for Remote Sensing. Studies in Computational Intelligence, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79353-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79353-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79352-6

  • Online ISBN: 978-3-540-79353-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics