Skip to main content

Elasto-Plastic Geometrically Non-linear Finite Element Analysis of Thick Plates and Shells With Damage Due to Microvoids

  • Chapter
Elasto-Plastic and Damage Analysis of Plates and Shells
  • 1450 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu Al-Rub, R.K. and Voyiadjis, G. (2003). On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct., 40, 11, 2611–2643.

    Article  MATH  Google Scholar 

  • Armstrong, P.J. and Frederick, C.O. (1966). A Mathematical Representation of the Multiaxial Bauschinger Effect. (CEGB Report RD/B/N/731). Berkeley Laboratories, R&D Department, California.

    Google Scholar 

  • Beachem, C.D. (1963). An electron fractographic study of the influence of plastic strain conditions upon ductile rapture processes in metals. Trans. A.S.M., 56, 318–326.

    Google Scholar 

  • Bieniek, M.P. and Funaro, J.R. (1976). Elasto-plastic behaviour of plates and shells. Technical Report DNA 3584A, Weidlinger Associates, New York.

    Google Scholar 

  • Bieniek, M.P., Funaro, J.R., Baron, M.L. (1976). Numerical Analysis of the Dynamic Response of Elasto-Plastic Shells. Technical Report No. 20, November 1976, Weidlinger Associates, New York.

    Google Scholar 

  • Bluhm, J.I., and Morrissey, R.J. (1965). Fracture in a Tensile Specimen. Proc. First Int. Conf. On Fracture, Sendai, Japan, September. In T. Yakobori, T. Kawasaki and J.L. Swedlow (eds.), Vol. 3, pp. 1739–1780.

    Google Scholar 

  • Crisfield, M.A. (1981a). Finite element analysis for combined material and geometric nonlinearities. In W. Wunderlich et al. (eds.) Nonlinear Finite Element Analysis in Structural Mechanics, Springer-Verlag, New York, pp. 325–338.

    Google Scholar 

  • Crisfield, M.A. (1981b). A fast incremental/iterative solution procedure that handles ‘snap-through’. Comp. Stuct., 13, 55–62.

    Article  MATH  Google Scholar 

  • Crisfield, M.A. (1983). An arc-length method including line searches and accelerations. Int. J. Num. Meth. Eng., 19, 1269–1289.

    Article  MATH  Google Scholar 

  • Crisfield, M.A. (1991). Non-linear Finite Element Analysis of Solids and Structures. Vol. 1. John Wiley & Sons Ltd, New York.

    Google Scholar 

  • Doghri, I. (2000). Mechanics of Deformable Solids: Linear and Nonlinear, Analytical and Computational Aspects. Springer, Germany.

    Google Scholar 

  • Dornowski, W. and Perzyna P. (2000). Localization phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings. Comp. Assis. Mech. Eng. Sci., 7, 117–160.

    Google Scholar 

  • Duszek-Perzyna, M.K. and Perzyna, P. (1993). Adiabatic shear band localization in elastic-plastic single crystals. Int. J. Solids Struct., 30, 1, 61–89.

    Article  MATH  Google Scholar 

  • Duszek-Perzyna, M.K. and Perzyna, P. (1994). Analysis of the influence of different effects on criteria for adiabatic shear band localization in inelastic solids. In R.C. Batra and H.M. Zbib (eds.). Material Instabilities: Theory and Applications, ASME Congress, Chicago, 9–11 November. AMD-Vol. 183/MD-Vol. 50, pp. 59–85.

    Google Scholar 

  • Duszek-Perzyna, M.K. and Perzyna, P. (1998). Analysis of anisotropy and plastic spin effects on localization phenomena. Arch. Appl. Mech., 68, 352–374, Springer-Verlag, New York.

    Google Scholar 

  • Fisher, J.R. (1980). Void Nucleation in Spheroidized Steels During Tensile Deformation. Ph.D. Thesis, Brown University.

    Google Scholar 

  • Gurland, J. and Plateau, J. (1963). The Mechanism of Ductile Rupture of Metals Containing Inclusions. Trans. A.S.M., 56, 443–454.

    Google Scholar 

  • Gurson, A.L. (1975). Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth and interaction, PhD Thesis, Brown University.

    Google Scholar 

  • Gurson, A.L. (1977). Continuum theory of ductile rapture by void nucleation and growth – Part I – Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol., 99, 2–15.

    Google Scholar 

  • Iliushin, A.A. (1956). Plastichnost’, Gostekhizdat, Moscow (in Russian).

    Google Scholar 

  • Lubarda, V.A. and Krajcinovic, D. (1993). Damage tensors and the crack density distribution. Int. J. Solids Struct., 30, 2859–2877.

    Article  MATH  Google Scholar 

  • Murakami, S. (1988). Mechanical modeling of material damage. J. Appl. Mech., Transact. ASME, 55, 2, 280–286.

    Google Scholar 

  • Perzyna, P. (1984b). Constitutive modeling of dissipative solids for postcritical behaviour and fracture. ASME, J. Eng. Mater. Technol., 106, 410–419.

    Article  Google Scholar 

  • Perzyna, P. and Drabik, A. (1989). Description of micro-damage process by porosity parameter for nonlinear viscoplasticity. Arch. Mech., 41, 895–908.

    Google Scholar 

  • Roy, G.L., Embury, J.D., Edward, G., and Ashby, M.F. (1981). A model of ductile fracture based on the nucleation an growth of voids. Acta Metall., 29, 1509–1522.

    Article  Google Scholar 

  • Seweryn, A. and Mroz, Z. (1998). On the criterion of damage evolution for variable multiaxial stress states. Int. J. Solids Struct. 35, 1589–1616.

    Article  MATH  Google Scholar 

  • Shi, G and Voyiadjis, G.Z. (1992). A simple non-layered finite element for the elasto-plastic analysis of shear flexible plates. Int. J. Num. Meth. Eng., 33, 85–99.

    Article  MATH  Google Scholar 

  • Shi, G and Voyiadjis, G.Z. (1993). A computational model for FE ductile plastic damage analysis of plate bending. J.Appl. Mech., 60, 749–758.

    Article  MATH  Google Scholar 

  • Ueda, Y., Yao, T. (1982). The plastic node method of plastic analysis. Comp. Meth. Appl. Mech. Eng., 34, 1089–1104.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z. and Abu-Lebdeh, (1993). Damage model for concrete using bounding surface concept. J. Eng. Mech., 119, 9, 1865–1885.

    Google Scholar 

  • Voyiadjis, G.Z. and Deliktas, B. (2000a). A coupled anisotropic damage model for the inelastic response of composite materials. Comp. Meth. Appl. Mech. Eng., 183, 159–199.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z., Deliktas, B. (2000b). Multi-scale analysis of multiple damage mechanics coupled with inelastic behavior of composite materials. Mech. Res. Commun., 27, 3, 295–300.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z. and Kattan, P.I. (1991). Effect of transverse normal strain on the bending of thick circular plates on the elastic foundation subjected to surface loads. Int. J. Mech. Sci., 33, 6, 413–433.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z. and Kattan, P.I. (1992a). A plasticity-damage theory for large deformations of solids. Part I: Theoretical formulation. Int. J. Eng. Sci., 30, 1089–1108.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z. and Kattan, P.I. (1992b). Finite strain plasticity and damage in constitutive modeling of metals with spin tensors. Appl. Mech. Rev., 45, S95–S109.

    Google Scholar 

  • Voyiadjis, G.Z. and Kattan, P.I. (1999). Advances in Damage Mechanics: Metals and Metal Matrix Composites. Elsevier, Oxford.

    Google Scholar 

  • Voyiadjis, G.Z. and Park, T. (1997). Local and interfacial damage analysis of metal matrix composites using finite element method. Eng. Fract. Mech., 56, 4, 483–511.

    Article  Google Scholar 

  • Voyiadjis, G.Z. and Park, T. (1999). Kinematics of damage for finite strain plasticity. Int. J. Eng. Sci., 37, 7, 803–830.

    Article  MathSciNet  Google Scholar 

  • Voyiadjis, G.Z. and Venson, A.R. (1995). Experimental damage investigaion of a SiC-Ti aluminade metal matrix composite. Int. J. Damage Mech., 4, 338–361.

    Article  Google Scholar 

  • Woelke, P. and Voyiadjis, G.Z. (2005). A stress resultant based yield surface with kinematic hardening and isotropic damage due to microvoids for isotropic plates and shells. Proceedings of McMat2005, 2005 Joint ASME/ASCE/SES Conference on Mechanics and Materials, June 1–3, Baton Rouge, Louisiana, USA.

    Google Scholar 

  • Woelke, P., Voyiadjis, G.Z. and Perzyna, P. (2006). Elasto-plastic finite element analysis of shells with damage due to microvoids. Int. J. Numer. Moth. Eng., 68, 3, 338–380. 2008.

    Article  MATH  Google Scholar 

  • Woelke, P., Chan, K.K., Abboud, N., Daddazio, R., Hapij, A. and Voyiadjis, G.Z. (2006b). Damage model for analysis of isotripic shells using EPSA. 77th Shock and Vibration Symposium Proceedings, Monterrey, CA, USA.

    Google Scholar 

  • Woelke, P., Abboud, N., Daddazio, R. and Voyiadjis, G. (2008). Localization, damage and fracture modeling in shell structures. Proceedings of World Congress of Computational Mechanics, Venice, Italy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voyiadjis, G.Z., Woelke, P. (2008). Elasto-Plastic Geometrically Non-linear Finite Element Analysis of Thick Plates and Shells With Damage Due to Microvoids. In: Elasto-Plastic and Damage Analysis of Plates and Shells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79351-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79351-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79350-2

  • Online ISBN: 978-3-540-79351-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics