Skip to main content

Shell Element Based on the Refined Theory of Thick Spherical Shells

  • Chapter
Elasto-Plastic and Damage Analysis of Plates and Shells
  • 1467 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashwell, D.G. and Sabir, A.B., (1972). A new cylindrical shell finite element based on simple independent strain functions. Int. J. Mech. Sci., 14, 171–183.

    Article  MATH  Google Scholar 

  • Belytschko, T., Liu, W.K., Ong, J.S.-J. (1984a). A consistent control of spurious singular modes in the 9-node Lagrange element for the Laplace and Mindlin plate equations. Comput. Meths. Appl. Mech. Eng., 44, 269–295.

    Article  MATH  Google Scholar 

  • Belytschko, T., Ong, J.S.-J., Liu, W.K., Kennedy, J.M. (1984b). Hourglass control in linear and non-linear problems, Comput. Meths. Appl. Mech. Eng., 43, 251–276.

    Article  MATH  Google Scholar 

  • Belytschko, T., Stolarski, H., Carpenter, N. (1984c). A C° triangular plate element with one-point quadrature. Int. J.Num. Meths. Eng., 20, 787–802.

    Article  MATH  Google Scholar 

  • Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N., Ong, J.S.-J. (1985). Stress projection for membrane and shear locking in shell finite elements. Comput. Methods Appl. Mech. Eng., 51, 221–258.

    Article  MATH  MathSciNet  Google Scholar 

  • Cook, R.D. (1972). Two hybrid elements for analysis of thick and thin sandwich plates. Int. J.Num. Meths. Eng., 5, 277.

    Article  MATH  Google Scholar 

  • Cook, R.D., Malkus, D.S., Plesha, M.E. (1989). Concepts and Applications of Finite Element Analysis. 3rd edition, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J. (2002). Concepts and Applications of Finite Element Analysis. 4th edition, John Wiley & Sons, New York.

    Google Scholar 

  • Flugge, W. (1960). Stresses in Shells. Springer, New York.

    Google Scholar 

  • Hibbit, Karlson & Sorensen, Inc. (2001). Abaqus, Theory Manual, Pawtucket, RI, USA

    Google Scholar 

  • Hu, H-C. (1981). The Variational Principles in Elasticity and its Application. Scientific Publisher, Beijing.

    Google Scholar 

  • Hughes, T.J.R. (1987). The Finite Element Method. Prentice-Hall, Englewood-Cliffs, NJ.

    MATH  Google Scholar 

  • Hughes, T.J.R. and Hinton, E. (1986). Finite Element Methods for Plate and Shell Structures. Pineridge, Swansea, UK.

    Google Scholar 

  • Koiter,W.T. (1960). A consistent first approximation in general theory of thin elastic shells. In Theory of Thin Elastic Shells, First IUTAM Symp. (Edited by W.T. Koiter), pp 12–33. North-Holland, Amsterdam.

    Google Scholar 

  • Lindberg, G.M., Olson, M.D., Cowper, G.R. (1969). New developments in the finite element analysis of shells. Qart. Bull. Div. Mech. Eng. Natl. Aeronautical Establishment, 4, 1–99.

    Google Scholar 

  • Liu, Y., Shi, G., Tang, L. (1984). Quasi-conforming elements for thick/thin beam and plate bending problems. J. DIT, 22, 3, 79–85.

    MathSciNet  Google Scholar 

  • Lu, H. and Liu, Y. (1981). Quasi-conforming element technique applied to double curvature shallow shells. J. DIT, 20, 1.

    Google Scholar 

  • MacNeal, H.R. and Harder, R.L. (1985). A proposed standard set of problems to test finite element accuracy. Finite Elements Anal. Design, 1, 3–20. North-Holland.

    Article  Google Scholar 

  • Morley, L.S.D and Morris, A.J. (1978). Conflict between finite elements and shell theory, Royal Aircraft Establishment Report. London.

    Google Scholar 

  • Sanders, J.L. (1959). An improved first approximation theory of thin shells. NASA Report24.

    Google Scholar 

  • Scordelis, A.C. and Lo, K.S. (1969) Computer analysis of cylindrical shells. J. Am. Concrete Inst.; 61:539–561.

    Google Scholar 

  • Shi, G. and Voyiadjis, G.Z. (1990). A simple C0 quadrilateral thick/thin shell element based on the refined shell theory and the assumed strain fields. Int. J. Solids Struct., 27, 3, 283–298.

    Article  Google Scholar 

  • Shi, G. and Voyiadjis, G.Z. (1991a). Geometrically nonlinear analysis of plates by assumed strain element with explicit tangent stiffness. Comput. Struct., 41, 757–763.

    Article  MATH  Google Scholar 

  • Shi, G. and Voyiadjis, G.Z. (1991b). Simple and efficient shear flexible two node arch/beam and four node cylindrical shell/plate finite element. Int. J. Num. Meth. Eng., 31, 759–776.

    Article  MATH  Google Scholar 

  • Simo, J.C.; Fox, D.D. and Rifai, M.S. (1989a). On a stress resultant geometrically exact shell model. Comp. Meth. Appl. Mech. Eng., 73, 53–92, North-Holland.

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.C.; Fox, D.D. and Rifai, M.S. (1989b). On a stress resultant geometrically exact shell model. Part II: The linear theory. Comp Meth. Appl. Mech. Eng., 73, 53–92, North-Holland.

    Article  MATH  MathSciNet  Google Scholar 

  • Stolarski, H. and Belytschko, T. (1981). Reduced integration for shallow-shell facet elements. New Concepts in Finite Element Analysis, Eds. T.J.R. Hughes, et. al., ASME, New York 179–194.

    Google Scholar 

  • Stolarski, H. and Belytschko, T. (1982). Membrane locking and reduced integration for curved elements. J. Appl. Mech. 49, 172–177.

    Article  MATH  Google Scholar 

  • Tang, L., Chen, W. and Liu, Y. (1980). Quasi-conforming elements for finite element analysis. J. DIT, 19, 2.

    Google Scholar 

  • Tang, L., Chen, W. and Liu, Y. (1983). String net function applications and quasi conforming technique. In Hybrid and Mixed Finite Element Methods, Wiley, New York

    Google Scholar 

  • Timoshenko, S.P. and Woinowsky-Krieger, S. (1959). Theory of Plates. McGraw-Hill, Inc., New York.

    Google Scholar 

  • Zienkiewicz, O.C. (1971). The Finite Element in Engineering Science. McGraw-Hill, London.

    MATH  Google Scholar 

  • Zienkiewicz, O.C. (1978). The Finite Element Method, McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voyiadjis, G.Z., Woelke, P. (2008). Shell Element Based on the Refined Theory of Thick Spherical Shells. In: Elasto-Plastic and Damage Analysis of Plates and Shells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79351-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79351-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79350-2

  • Online ISBN: 978-3-540-79351-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics