Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashwell, D.G. and Gallagher, R.H. (Eds) (1976). Finite Elements for Thin Shells and Curved Membranes. Wiley, New York.

    Google Scholar 

  • Basar, Y., Ding, Y., Schultz, R. (1992). Shear-deformation models for the finite-rotation analysis of multilayered shell structures. Modeling of Shells with Non-linear behaviour, Euromech Colloquium 292, 2–4 Sept. 1992, Munich, Germany.

    Google Scholar 

  • Basar, Y., Ding, Y., Schultz, R. (1993). Refined shear-deformation models for composite laminates with finite rotations. Int. J. Solids Struct., 30, 19, 2611–2638.

    Article  MATH  Google Scholar 

  • Bathe, K.J. (1982). Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Bathe, K.J. and Brezzi, F. (1985). On the convergence of the four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. Proceedings Conference on Mathematics of Finite Elements and Applications, Academic Press, New York.

    Google Scholar 

  • Bathe, K.J. and Dvorkin, E.N. (1984). A continuum mechanics based four-node shell element for general non-linear analysis. Int. J. Comp. Aided Eng. Software, 1, 1, 77–88.

    Article  Google Scholar 

  • Dennis, S.T., Palazotto, A.N. (1989). Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory. AIAA J., 27, 10, 1441–1447.

    Article  MATH  Google Scholar 

  • Dvorkin, E.N. and Bathe, K.J. (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Computation. 1, 1, 77–88.

    Article  Google Scholar 

  • Flugge, W. (1960). Stresses in Shells, 2nd edition, Springer, Berlin.

    Google Scholar 

  • Gupta, A.K. and Khatua, T.P. (1978). On thick superparametric shell element. Int. J. Numer. Meths Eng., 12, 1883–1889.

    Article  MATH  Google Scholar 

  • Hu, H-C. (1984). The Variational Principles in Elasticity and its Application. Scientific Publisher, Beijing.

    Google Scholar 

  • Kirchhoff, G, (1850). Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math., 40, 51–58.

    MATH  Google Scholar 

  • Kratzig, W.B. (1992). ‘Best’ transverse shearing and stretching shell theory for nonlinear finite element simulations. Comp. Meth. Appl. Mech. Eng., 103, 135–160.

    Article  Google Scholar 

  • Kratzig, W.B., Jun, D. (2003). On ‘best’ shell models-from classical shells, degenerated and multi-layered concepts to 3D. Arch. Appl. Mech., 73, 1–25.

    Google Scholar 

  • Lame, G. (1852). Lecons sur la theorie mathematique d’elasticite des corps solides, Bachelier, Paris, France., Reprint: 2006, ISBN: 2-87647-261-9.

    Google Scholar 

  • Love, A.E.H., (1944). A Treatise on the Mathematical Theory of Elasticity. Dover (reprinted), New York.

    MATH  Google Scholar 

  • Mindlin, R.D. (1951). Thickness-Shear and Flexural Vibrations of Crystal Plates. J. Appl. Phys., 22, 316–323.

    Article  MATH  MathSciNet  Google Scholar 

  • Niordson, F.I. (1971). A note on the strain energy of elastic shells. Int. J. Solids Struct., 7, 1573–1579.

    Article  MATH  MathSciNet  Google Scholar 

  • Niordson, F.I. (1978). A consistent refined shell theory. Complete Analysis and its Applications, Vekua Anniversary Volume, 421–429. Nauka, Moscow.

    Google Scholar 

  • Niordson, F.I. (1985). Shell Theory. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Noor, A.K. and Burton, W.S. (1989). Assessment of shear deformation theory for multilayered composite plates. Appl. Mech. Rev., 42(1), 1–13.

    Google Scholar 

  • Palazotto, A.N. and Linnemann, P.E. (1991). Vibration and buckling characteristics of composite cylindrical panels incorporating the effects of a higher order shear theory. Int. J. Solids Struct., 28, 3, 341–361.

    Article  Google Scholar 

  • Reddy, J.N. (1984). A simple high-order theory for laminated composite plates. J. Appl. Mech., 51, 745–752.

    MATH  Google Scholar 

  • Reddy, J.N. (1989). On refined computational models composite laminates. Int. J. Num. Meths. Eng. 27, 361–382.

    Article  MATH  Google Scholar 

  • Reissner, E. (1945). The effects of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. ASME, 12, 66–77.

    Google Scholar 

  • Reissner, E. (1975). On transverse bending of plates, including the effects of transverse shear deformation. Int. J. Solids Struct., 11, 569–576.

    Article  MATH  Google Scholar 

  • Sanders, J.L. (1959). An improved first approximation theory of thin shells. NASA Report 24.

    Google Scholar 

  • Schenck, D.R. (1999). Some Formation Problems for Linear Elastic Materials. Doctoral Dissertation, Virginia Polytechnic Institute, Blacksburg, Virginia.

    Google Scholar 

  • Ugural, A.C. (1999). Stresses in Plates and Shells. McGraw-Hill, Inc., New York.

    Google Scholar 

  • Voyiadjis, G.Z. and Baluch, H.M. (1981). Refined theory for flexural motions of isotropic plates. J.Sound Vib., 76, 57–64.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z., and Kattan, P.I.. (1986). Thick rectangular plates on an elastic foundation. J. Eng. Mech., ASCE, 112, 11, 1218–1240.

    Article  Google Scholar 

  • Voyiadjis, G.Z. and Kattan, P.I. (1991). Effect of transverse normal strain on the bending of thick circular plates on the elastic foundation subjected to surface loads. Int. J. Mech. Sci., 33, 6, 413–433.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z. and Shi, G. (1991). Refined two-dimensional theory for thick cylindrical shells. Int. J. Solids Struct.. 27, 261–282.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z. and Woelke, P. (2004). A refined theory for thick spherical shells. Int. J. Solids Struct. 41, 3747–3769.

    Article  MATH  Google Scholar 

  • Voyiadjis, G.Z. and Woelke, P. (2006). General non-linear finite element analysis of thick plates and shells. Int. J. Solids Struct., 43, 2209–2242.

    Article  MATH  Google Scholar 

  • Woelke, P., Chan, K.K., Daddazio, R. and Abboud, N. (2006) Stress resultant based elastoviscoplastic thick shell model. 77th Shock and Vibration Symposium Proceedings, Monterrey, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voyiadjis, G.Z., Woelke, P. (2008). Shell Constitutive Equations. In: Elasto-Plastic and Damage Analysis of Plates and Shells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79351-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79351-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79350-2

  • Online ISBN: 978-3-540-79351-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics