Skip to main content

Pathogenesis of Dermatomyositis

  • Chapter
Dermatomyositis
  • 1667 Accesses

Over the past 25 years, much has been learned about the cellular and humoral immune-mediated mechanisms involved in the pathogenesis of DM. More recently, the role of complement, specifically the MAC, in immune-mediated vascular injury has been further elucidated. Additionally, susceptibility to develop juvenile DM has been linked with the class II major histocompatibility complex HLA-DQA1*0501 allele, and disease course and various complications have been associated with polymorphisms at the TNF-α-308 locus. In this way, the genetic background of children with DM is integrally entwined with the type of elicited inflammatory response. More recently, data has become available regarding the molecular genetics of children affected with juvenile DM and the impact these genes have on disease expression and clinical course [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wargula JC. Update on juvenile dermatomyositis: new advances in understanding its etio-pathogenesis. Curr Opin Rheumatol 2003; 15(5): 595–601.

    Article  PubMed  CAS  Google Scholar 

  2. Rider LG, Gurley RC, Randey J P, et al. Clinical, serologic, and immunogenetic features of familial idiopathic inflammatory myopathy. Arthritis Rheum 1998; 41: 710–719.

    Article  PubMed  CAS  Google Scholar 

  3. Plamondon S, Dent PB, Reed AM. Familial dermatomyositis. J Rheumatol 1999; 26: 2691–2692.

    PubMed  CAS  Google Scholar 

  4. Davies MG, Hickling P. Familial adult dermatomyositis. Br J Dermatol 2001; 144: 415–416.

    Article  PubMed  CAS  Google Scholar 

  5. Reed AM, Ytterberg SR. Genetic and environmental risk factors for idiopathic inflammatory myopathies. Rheum Dis Clin N Am 2002; 28: 891–916.

    Article  Google Scholar 

  6. Pachman LM, Cook N. Juvenile dermatomyositis: a clinical and immunological study. J Pediatr 1980; 96: 226.

    Article  PubMed  CAS  Google Scholar 

  7. Adams-Gandhi LB, Boyd AS, King LE. Diagnosis and management of dermatomyositis. Compr Ther 1996; 22: 156–164.

    PubMed  CAS  Google Scholar 

  8. Goldstein R, Duvic M, Targoff I, et al. HLA-D region genes associated with autoantibody responses to Jo-1 (histidyl-tRNA synthetase) and other translation-related factors in myositis. Arthritis Rheum 1990; 33: 657–665.

    Article  Google Scholar 

  9. Wilson CL, Bradlow A, Wonjarowska F. Cutaneous problems with drug therapy in rheumatoid arthritis. Int J Dermatol 1991; 30: 148–149.

    Article  PubMed  CAS  Google Scholar 

  10. Shamim EA, Rider LG, Miller F W. Update on the genetics of the idiopathic inflammatory myopathies. Curr Opin Rheumatol 2000; 12: 482–491.

    Article  PubMed  CAS  Google Scholar 

  11. Reed AM, Stirling JD. Association of the HLA-DQA1*0501 allele in multiple racial groups with juvenile dermatomyositis. Human Immunol 1995; 44: 131–135.

    Article  CAS  Google Scholar 

  12. Pachman LM. Juvenile dermatomyositis: immunogenetics, pathophysiology, and disease expression. Rheum Dis Clin North Am 2002; 28: 579–602.

    Article  PubMed  Google Scholar 

  13. Pachman LM, Liotta-Davis MR, Hong DK, et al. TNF alpha-308A allele in juvenile dermato-myositis — associations with increased TNF alpha production, disease duration and pathological calcifications. Arthritis Rheum 2000; 43: 2368–2377.

    Article  PubMed  CAS  Google Scholar 

  14. Greenberg SA, Sanoudou D, Haslett JN, et al. Molecular profiles of inflammatory myopa-thies. Neurology 2002; 59: 1170–1182.

    PubMed  CAS  Google Scholar 

  15. Tezak Z, Hoffman E P, Lutz JL, et al. Gene expression profiling in DQA1*0501 + children with untreated dermatomyositis: a novel model of pathogenesis. J Immunol 2002; 168: 4154–4163.

    PubMed  CAS  Google Scholar 

  16. Hoffman EP, Rao D, Pachman LM. Clarifying the boundaries between the inflammatory and dystrophic myopathies: insights from molecular diagnostics and microarrays. Rheum Dis Clin N Am 2002; 28: 743–757.

    Article  Google Scholar 

  17. Pociot F, Briant L, Jongeneel C V, et al. Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 1993; 23: 224–231.

    Article  PubMed  CAS  Google Scholar 

  18. Kroeger KM, Carville KS, Abraham LJ. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 1997; 34: 391–399.

    Article  PubMed  CAS  Google Scholar 

  19. Pachman LM, Fedczyna TO, Lutz JL, et al. Juvenile dermatomyositis: the association of the TNFα-308A allele and disease chronicity. Curr Rheumatol Rep 2001; 5: 379–386.

    Article  Google Scholar 

  20. Pachman LM, Lingen M, Caliendo J, et al. Muscle biopsy findings in 38 untreated children with juvenile dermatomyositis (JDM): capillary occlusion is associated with the TNFα allele. Arthritis Rheum 1999; 42: S403.

    Google Scholar 

  21. Lutz J, Huwiler KG, Fedczyna T, et al. Increased plasma thrombospondin-1 (TSP-1) levels are associated with the TNF alpha-308A allele in children with juvenile dermatomyositis. Clin Immunol 2002; 103: 260–263.

    Article  PubMed  CAS  Google Scholar 

  22. Jimenez B, Volpert O V, Crawford SE, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Med 2000; 6: 41–48.

    Article  PubMed  CAS  Google Scholar 

  23. Werth V P, Callen J P, Ang G, et al. Associations of tumor necrosis factor α and HLA polymorphism with adult dermatomyositis: implications for a unique pathogenesis. J Invest Dermatol 2002; 119: 617–620.

    Article  PubMed  CAS  Google Scholar 

  24. Werth V P, Berlin JA, Callen J P, et al. Mannose binding lectin (MBL) polymorphisms associated with low MBL production in patients with dermatomyositis. J Invest Dermatol 2002; 119: 1394–1399.

    Article  PubMed  CAS  Google Scholar 

  25. Kissel JT, Mendell JR, Rammohan KW. Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med 1986; 314: 329–334.

    PubMed  CAS  Google Scholar 

  26. Emslie-Smith AM, Engel AG. Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann Neurol 1990; 27: 343–356.

    Article  PubMed  CAS  Google Scholar 

  27. Kissel JT, Halterman RK, Rammohan KW, et al. The relationship of complement-mediated microvasculopathy to the histologic features and clinical duration of disease in dermatomyositis. Arch Neurol 1991; 48: 26–30.

    PubMed  CAS  Google Scholar 

  28. Rollins SA, Sims PJ. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of CD59 into C5b-9. J Immunol 1990; 144: 3478–3483.

    PubMed  CAS  Google Scholar 

  29. Navenot JM, Villanova M, Lucas-Heron B, et al. Expression of CD59, a regulator of the membrane attack complex of complement, on human skeletal muscle fibers. Muscle Nerve 1997; 20: 92–96.

    Article  PubMed  CAS  Google Scholar 

  30. Goncalves FG, Chimelli L, Sallum AM, et al. Immunohistological analysis of CD59 and membrane attack complex of complement in muscle in juvenile dermatomyositis. J Rheumatol 2002; 29: 1301–1307.

    PubMed  CAS  Google Scholar 

  31. Gasque P, Morgan BP, Legoedec J, et al. Human skeletal myoblasts spontaneously activate allogenic complement but are resistant to killing. J Immunol 1996; 156: 3402–3411.

    PubMed  CAS  Google Scholar 

  32. Tews DS, Goebel HH. Cytokine expression profiles in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 1996; 55: 342–347.

    Article  PubMed  CAS  Google Scholar 

  33. De Bleecker JL, De Paepe B, Vanwalleghem IE, et al. Differential expression of chemokines in inflammatory myopathies. Neurology 2002; 58: 1779–1785.

    Google Scholar 

  34. Kuru S, Inukai A, Liang Y, et al. Tumor necrosis factor-α expression in muscles of polymyositis and dermatomyositis. Acta Neuropathol 2000; 99: 585–588.

    Article  PubMed  CAS  Google Scholar 

  35. Dalakas MC, Hohfeld R. Polymyositis and dermatomyositis. Lancet 2003; 362: 971–982.

    Article  PubMed  CAS  Google Scholar 

  36. Leon-Monzon M, Dalakas MC. Interleukin-1 (IL-1) is toxic to human muscle. Neurology 1994; 44 (Suppl): 132.

    Google Scholar 

  37. Kalovidouris AE, Plotkin Z. Synergistic cytotoxic effect of interferon y and tumor necrosis factor a on cultured human muscle cells. J Rheumatol 1995; 22: 1698–1703.

    PubMed  CAS  Google Scholar 

  38. Murakami N, McLennan IS, Nonaka I, et al. Transforming growth factor-β2 is elevated in skeletal muscle disorders. Muscle Nerve 1999; 22: 889–898.

    Article  PubMed  CAS  Google Scholar 

  39. Del Prete G, Maggi E, Romagnani S. Human Th1 and Th2 cells: functional properties, mechanisms of regulation, and role in diseases. Lab Invest 1994; 70: 299–306.

    Google Scholar 

  40. Lepidi H, Frances V, Figarella-Branger D, et al. Local expression of cytokines in idiopathic inflammatory myopathies. Neuropathol Appl Biol 1998; 24: 73–79.

    Article  CAS  Google Scholar 

  41. Illa I, Gallardo E, Gimeno R, et al. Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies. Am J Pathol 1997; 151: 81–88.

    PubMed  CAS  Google Scholar 

  42. Dalakas MC, Illa I, Dambrosia JM, et al. A controlled trial of high dose intravenous immunoglobulin infusions as treatment for dermatomyositis. N Engl J Med 1993; 329: 1993–2000.

    Article  PubMed  CAS  Google Scholar 

  43. Kunkel EJ, Butcher EC. Chemokines and the tissue-specific migration of lymphocytes. Immunity 2002; 16: 1–4.

    Article  PubMed  CAS  Google Scholar 

  44. Choi YC, Dalakas MC. Expression of matrix metalloproteinases in the muscle of patients with inflammatory myopathies. Neurology 2000; 54: 65–71.

    PubMed  CAS  Google Scholar 

  45. Kieseier BC, Schneider C, Clements JM, et al. Expression of specific matrix metalloproteinases in inflammatory myopathies. Brain 2001; 124: 341–351.

    Article  PubMed  CAS  Google Scholar 

  46. Sontheimer RD. Dermatomyositis: an overview of recent progress with emphasis on dermato-logic aspects. Dermatol Clin 2002; 20(3): 387–408.

    Article  PubMed  Google Scholar 

  47. Lundberg IE. Idiopathic inflammatory myopathies: why do the muscles become weak? Curr Opin Rheumatol 2001; 13: 457–460.

    Article  PubMed  CAS  Google Scholar 

  48. Kubo M, Ihn H, Yamane K, et al. Increased serum levels of soluble vascular cell adhesion molecules-1 and soluble E-selectin in patients with polymyositis/dermatomyositis. Br J Dermatol 2000; 143: 392–398.

    Article  PubMed  CAS  Google Scholar 

  49. Sontheimer RD, Racila D. Blood levels of soluble vascular adhesion molecules, VCAM-1 and E-selectin, are increased in clinically amyopathic dermatomyositis [abstract]. J Invest Dermatol 2001; 117: 440.

    Google Scholar 

  50. Bloom BJ, Miller LC, Blier PR. Soluble adhesion molecules in pediatric rheumatic diseases. J Rheumatol 2002; 29: 832–836.

    PubMed  CAS  Google Scholar 

  51. Mojcik CF, Shevach EM. Adhesion molecules: a rheumatologic perspective. Arthritis Rheum 1997; 40: 991–1004.

    Article  PubMed  CAS  Google Scholar 

  52. Hausmann G, Mascaro JM, Herrero C. Cell adhesion molecule expression in cutaneous lesions of dermatomyositis. Acta Derm Venereol 1996; 76(3): 222–225.

    PubMed  CAS  Google Scholar 

  53. Kumamoto T, Abe T, Ueyama H, et al. Elevated soluble intercellular adhesion molecules-1 in inflammatory myopathy. Acta Neurol Scand 1997; 95: 34–37.

    Article  PubMed  CAS  Google Scholar 

  54. Twes DS, Goebels HH. Expression of cell adhesion molecules in inflammatory myopathies. J Neuroimmunol 1995; 59: 185–194.

    Article  Google Scholar 

  55. Newman W, Beall LD, Carson C W, et al. Soluble E-selectin is found in supernatans of activated endothelian cells and is elevated in the serum of patients with septic shock. J Immunol 1993; 150: 644–654.

    PubMed  CAS  Google Scholar 

  56. Leca G, Mansur SE, Bensussan A. Expression of VCAM 1 (CD106) by a subset of TCTγδ-bearing lymphocyte clones. Involvement of a metalloproteinase in the specific hydrolytic release of the soluble isoform. J Immunol 1995; 154: 1069–1077.

    PubMed  CAS  Google Scholar 

  57. Thornhil MH, Haskard DO. Il-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-γ. J Immunol 1990; 145: 865–872.

    Google Scholar 

  58. Wellicome SM, Thornhill MH, Pitzalis C, et al. A monoclonal antibody that detects a novel antigen on endothelial cells that is induced by tumor necrosis factor, IL-1, or lipopolysaccha-ride. J Immunol 1990; 144: 2558–2565.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Pathogenesis of Dermatomyositis. In: Dermatomyositis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79313-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79313-7_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79312-0

  • Online ISBN: 978-3-540-79313-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics