Skip to main content

Self-organization and Evolution Combined to Address the Vehicle Routing Problem

  • Conference paper
Artificial Evolution (EA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4926))

  • 705 Accesses

Abstract

The paper deals with a self-organizing system in a evolutionary framework applied to the Euclidean Vehicle Routing Problem (VRP). Theoretically, self-organization is intended to allow adaptation to noisy data as well as to confer robustness according to demand fluctuation. Evolution through selection is intended to guide a population based search toward near-optimal solutions. To implement such principles to address the VRP, the approach uses the standard self-organizing map algorithm as a main operator embedded in a evolutionary loop. We evaluate the approach on standard benchmark problems and show that it performs better, with respect to solution quality and/or computation time, than other self-organizing neural networks to the VRP presented in the literature. As well, it substantially reduces the gap to some classical Operations Research heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S.: Polynomial-time Approximation Schemes for Euclidean TSP and other Geometric Problems. Journal of the ACM 45(5), 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bäck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: 4th Int. Conf. on Genetic Algorithms, La Jolla, CA (1991)

    Google Scholar 

  3. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., et al. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, Chichester (1979)

    Google Scholar 

  4. Clarke, G., Wright, J.W.: Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research 12, 568–581 (1964)

    Article  Google Scholar 

  5. Cochrane, E.M., Beasley, J.E.: The co-adaptive neural network approach to the Euclidean Travelling Salesman Problem. Neural Networks 16, 1499–1525 (2003)

    Article  Google Scholar 

  6. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational Research Society 52, 928–936 (2001)

    Article  MATH  Google Scholar 

  7. Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.S.: New Heuristics for the Vehicle Routing Problem. In: Langevin, A., Riopel, D. (eds.) Logistics Systems: Design and Optimization, pp. 279–297. Springer, New York (2005)

    Chapter  Google Scholar 

  8. Créput, J.C., Koukam, A., Lissajoux, T., Caminada, A.: Automatic Mesh Generation for Mobile Network Dimensioning using Evolutionary Approach. IEEE Transactions on Evolutionary Computation 9(1), 18–30 (2005)

    Article  Google Scholar 

  9. Créput, J.C., Koukam, A.: Local search study of honeycomb clustering problem for cellular planning. International Journal of Mobile Network Design and Innovation 1(2), 153–160 (2006)

    Article  Google Scholar 

  10. Créput, J.C., Koukam, A.: Interactive Meshing for the Design and Optimization of Bus Transportation Networks. Journal of Transportation Engineering 133(9), 529–538 (2007)

    Article  Google Scholar 

  11. Créput, J.C., Koukam, A.: Transport Clustering and Routing as a Visual Meshing Process. Journal of Information and Optimization Sciences, Taru Publications (in press, 2007)

    Google Scholar 

  12. Créput, J.C., Koukam, A., Hajjam, A.: Self-Organizing Maps in Evolutionary Approach for the Vehicle Routing Problem with Time Windows. International Journal of Computer Science and Network Security 7(1), 103–110 (2007)

    Google Scholar 

  13. Ergun, Ö., Orlin, J.B., Steele-Feldman, A.: Creating very large scale neighborhoods out of smaller ones by compounding moves: a study on the vehicle routing problem. MIT Sloan Working Paper No. 4393-02, USA (2003)

    Google Scholar 

  14. Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the capacitated VRP. In: Toth, P., Vigo, D. (eds.) The vehicle routing problem, pp. 129–154. SIAM, Philadelphia (2002)

    Google Scholar 

  15. Ghaziri, H.: Supervision in the Self-Organizing Feature Map: Application to the Vehicle Routing Problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory & Applications, pp. 651–660. Kluwer, Boston (1996)

    Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1994)

    Google Scholar 

  17. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M.: Metaheuristics in vehicle routing. In: Crainic, T.G., Laporte, G. (eds.) Fleet Management and Logistics, pp. 33–56. Kluwer, Boston (1998)

    Google Scholar 

  18. Gomes, L.C.T., Von Zuben, F.J.A.: Vehicle Routing Based on Self-Organization with and without Fuzzy Inference. In: Proc. of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1310–1315 (2002)

    Google Scholar 

  19. Kohonen, T.: Self-Organization Maps and associative memory, 3rd edn. Springer, Berlin (2001)

    Google Scholar 

  20. Laporte, G., Gendreau, M., Potvin, J.Y., Semet, F.: Classical and Modern Heuristics for the vehicle routing problem. International Transaction in Operational Research 7, 285–300 (2000)

    Article  MathSciNet  Google Scholar 

  21. Matsuyama, Y.: Self-organization via competition, cooperation and categorization applied to extended vehicle routing problems. In: Proc. of the International Joint Conference on Neural Networks, Seatle, WA, pp. 385–390 (1991)

    Google Scholar 

  22. Mester, D., Bräysy, O.: Active Guided Evolution Strategies for Large Scale Vehicle Routing Problems with Time Windows. Computers & Operations Research 32, 1593–1614 (2005)

    Article  Google Scholar 

  23. Modares, A., Somhom, S., Enkawa, T.: A self-organizing neural network approach for multiple traveling salesman and vehicle routing problems. International Transactions in Operational Research 6, 591–606 (1999)

    Article  MathSciNet  Google Scholar 

  24. Moscato, P.: Memetic Algorithms: A Short Introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, McGraw Hill, New York (1999)

    Google Scholar 

  25. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31, 1985–2002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reimann, M., Doerner, K., Hartl, R.F.: D-ants: savings based ants divide and conquer the vehicle routing problem. Computers & Operations Research 31, 563–591 (2004)

    Article  MATH  Google Scholar 

  27. Reinelt, G.: TSPLIB-A traveling salesman problem library. ORSA Journal on Computing 3, 376–384 (1991)

    MATH  Google Scholar 

  28. Rochat, Y., Taillard, E.D.: Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics 1, 147–167 (1995)

    Article  MATH  Google Scholar 

  29. Schumann, M., Retzko, R.: Self-organizing maps for vehicle routing problems minimizing an explicit cost function. In: Proc. of the International Conference on Artificial Neural Networks, Paris, pp. 401–406 (1995)

    Google Scholar 

  30. Schwardt, M., Dethloff, J.: Solving a continuous location-routing problem by use of a self-organizing map. Int J Physical Distribution & Logistics Management 35(6), 390–408 (2005)

    Article  Google Scholar 

  31. Taillard, E.D., Gambardella, M.L., Gendreau, M., Potvin, J.Y.: Adaptive memory programming: A unified view of metaheuristics. European Journal of Operational Research 135, 1–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle routing problem. INFORMS Journal on Computing 15, 333–348 (2003)

    Article  MathSciNet  Google Scholar 

  33. Vakhutinsky, A.I., Golden, B.L.: Solving vehicle routing problems using elastic net. In: IEEE International Conference on Neural Network, pp. 4535–4540 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicolas Monmarché El-Ghazali Talbi Pierre Collet Marc Schoenauer Evelyne Lutton

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Créput, JC., Koukam, A. (2008). Self-organization and Evolution Combined to Address the Vehicle Routing Problem. In: Monmarché, N., Talbi, EG., Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA 2007. Lecture Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79305-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79305-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79304-5

  • Online ISBN: 978-3-540-79305-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics