Skip to main content

Aerodynamic Topology Optimisation Using an Implicit Representation and a Multiobjective Genetic Algorithm

  • Conference paper
Artificial Evolution (EA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4926))

Abstract

Given the focus on incremental change in existing empirical aerodynamic design methods, radical, unintuitive, new optimal solutions in previously unexplored regions of design space are very unlikely to be found using them. We present a framework based on an implicit shape representation and a multiobjective evolutionary algorithm that aims to produce a variety of optimal flow topologies for a given requirement, providing designers with insights into possibly radical solutions. A revolutionary integrated flow simulation system developed specifically for design work is used to evaluate candidate designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giles, M.B.: Aerospace Design: a Complex Task. Technical Report 97/07, Oxford University Computing Laboratory (1997)

    Google Scholar 

  2. Fluent Inc.: First Viscous Analysis of Grid Fins Gives Better Prediction of Missile Trajectory. JA136 Journal Articles by Fluent Software Users, Fluent Inc. (2001)

    Google Scholar 

  3. Scott, J.: Missile Grid Fin (2006) (Last checked on September 15th, 2007), http://www.aerospaceweb.org

  4. Deb, K.: Unveiling Innovative Design Principles by Means of Multiple Conflicting Objectives. Engineering Optimization 35(5), 445–470 (2003)

    Article  Google Scholar 

  5. Sasaki, D., Obayashi, S., Nakahashi, K.: Navier-Stokes Optimization of Supersonic Wings with Four Objectives Using Evolutionary Algorithm. Journal of Aircraft 39 (2002)

    Google Scholar 

  6. Hutabarat, W., Parks, G.T., Jarrett, J.P., Clarkson, P.J.: A New Approach to Aerodynamic Topology Optimization. In: Parmee, I. (ed.) Adaptive Computing in Design and Manufacture, vol. 2006 (2006)

    Google Scholar 

  7. Cambridge Flow Solutions: BoXeR (2007) (Last checked on September 15th, 2007), http://www.cambridgeflowsolutions.com

  8. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  9. Jameson, A., Vassberg, J.C.: Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact. In: 39th AIAA Aerospace Sciences Meeting and Exhibit, AIAA (2001)

    Google Scholar 

  10. Borrvall, T., Petersson, J.: Topology Optimization of Fluids in Stokes Flow. International Journal for Numerical Methods in Fluids 41, 77–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bendsoe, M., Kikuchi, N.: Generating Optimal Topologies in Structural Design Using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering 71(2), 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  12. Gersborg-Hansen, A.: Topology Optimization of Flow Problems. PhD thesis, Technical University of Denmark (2007)

    Google Scholar 

  13. Häussler, P., Nitsopoulos, I., Sauter, J., Stephan, M.: Topology and Shape Optimization Methods for CFD Problems. In: 24th CADFEM Users’ Meeting 2006, International Congress on FEM Technology (2006)

    Google Scholar 

  14. Xie, Y., Steven, G.: Evolutionary Structural Optimization. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  15. Kane, C., Schoenauer, M.: Topological Optimum Design Using Genetic Algorithms. Control and Cybernetics 25(5), 1059–1088 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Kita, E., Tamaki, T., Tanie, H.: Topology and Shape Optimization of Continuum Structures by Genetic Algorithm and BEM. Computer Assisted Mechanics and Engineering Sciences 11, 63–75 (2004)

    Google Scholar 

  17. Allaire, G., Gournay, F.D., Jouve, F., Toader, A.M.: Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method. Technical report, Ecole Polytechnique (2004)

    Google Scholar 

  18. Wang, S., Wang, M.: Radial Basis Functions and Level Set Method for Structural Topology Optimization. International Journal for Numerical Methods in Engineering 65(12), 2060–2090 (2005)

    Article  Google Scholar 

  19. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and Representation of 3D Objects with Radial Basis Functions. In: Conference on Computer Graphics and Interactive Techniques, pp. 67–76 (2001)

    Google Scholar 

  20. Dawes, W.N.: Building Blocks Towards VR-Based Flow Sculpting. In: 43rd AIAA Aerospace Sciences Meeting & Exhibit, AIAA (January 2005)

    Google Scholar 

  21. Turk, G., O’Brien, J.: Modelling with Implicit Surfaces that Interpolate. ACM Transations on Graphics 21, 855–873 (2002)

    Article  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  23. Hirschen, K., Schäfer, M.: A Study on Evolutionary Multi-objective Optimization for Flow Geometry Design. Computational Mechanics 37(2), 131–141 (2006)

    Article  MATH  Google Scholar 

  24. Ballester, P.J., Carter, J.N.: An Effective Real-Parameter Genetic Algorithm with Parent Centric Normal Crossover for Multimodal Optimisation. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 901–913. Springer, Heidelberg (2004)

    Google Scholar 

  25. Fogel, D.B.: Mutation Operators. In: Evolutionary Computation I: Basic Algorithms and Operators, pp. 237–255. Institute of Physics Publishing, Bristol, UK (2000)

    Google Scholar 

  26. Kellar, W.P.: Geometry Modeling in Computational Fluid Dynamics and Design Optimisation. PhD thesis, University of Cambridge (January 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicolas Monmarché El-Ghazali Talbi Pierre Collet Marc Schoenauer Evelyne Lutton

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hutabarat, W., Parks, G.T., Jarrett, J.P., Dawes, W.N., Clarkson, P.J. (2008). Aerodynamic Topology Optimisation Using an Implicit Representation and a Multiobjective Genetic Algorithm. In: Monmarché, N., Talbi, EG., Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA 2007. Lecture Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79305-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79305-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79304-5

  • Online ISBN: 978-3-540-79305-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics