Skip to main content

Legally-Enforceable Fairness in Secure Two-Party Computation

  • Conference paper
Topics in Cryptology – CT-RSA 2008 (CT-RSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4964))

Included in the following conference series:

Abstract

In the setting of secure multiparty computation, a set of mutually distrustful parties wish to securely compute some joint function of their private inputs. The computation should be carried out in a secure way, meaning that the properties privacy, correctness, independence of inputs, fairness and guaranteed output delivery should all be preserved. Unfortunately, in the case of no honest majority – and specifically in the important two-party case – it is impossible to achieve fairness and guaranteed output delivery. In this paper, we show how a legal infrastructure that respects digital signatures can be used to enforce fairness in two-party computation. Our protocol has the property that if one party obtains output while the other does not (meaning that fairness is breached), then the party not obtaining output has a digitally signed cheque from the other party. Thus, fairness can be “enforced” in the sense that any breach results in a loss of money by the adversarial party.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: 4th CCS, pp. 8–17 (1997)

    Google Scholar 

  2. Beaver, D., Goldwasser, S.: Multiparty Computation with Faulty Majority. In: 30th FOCS, pp. 468–473 (1989)

    Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: 20th STOC, pp. 1–10 (1988)

    Google Scholar 

  4. Cachin, C., Camenisch, J.: Optimistic Fair Secure Computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology 13(1), 143–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Canetti, R.: Universally Composable Signature, Certification, and Authentication. In: 17th IEEE Computer Security Foundations Workshop (CSFW), pp. 219–235 (2004)

    Google Scholar 

  7. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

    Google Scholar 

  8. Chaum, D., Crépeau, C., Damgard, I.: Multi-party Unconditionally Secure Protocols. In: 20th STOC, pp. 11–19 (1988)

    Google Scholar 

  9. Chen, L., Kudla, C., Paterson, K.: Concurrent Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004)

    Google Scholar 

  10. Cleve, R.: Limits on the Security of Coin Flips when Half the Processors are Faulty. In: 18th STOC, pp. 364–369 (1986)

    Google Scholar 

  11. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource Fairness and Composability of Cryptographic Protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in Secure Two-Party Computation (manuscript, 2007)

    Google Scholar 

  13. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp. 218–229 (1987)

    Google Scholar 

  15. Goldwasser, S., Levin, L.: Fair Computation of General Functions in Presence of Immoral Majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)

    Google Scholar 

  16. Goldwasser, S., Lindell, Y.: Secure Computation Without Agreement. Journal of Cryptology 18(3), 247–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lindell, Y., Lysysanskaya, A., Rabin, T.: On the Composition of Authenticated Byzantine Agreement. Journal of the ACM 53(6), 881–917 (2006)

    Article  MathSciNet  Google Scholar 

  18. Micali, S.: Secure Protocols with Invisible Trusted Parties. Presentation on Multi-Party Secure Protocols, Weizmann Institute of Science, Israel (June 1998)

    Google Scholar 

  19. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In: 22nd PODC, pp. 12–19 (2003)

    Google Scholar 

  20. Pinkas, B.: Fair Secure Two-Party Computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Yao, A.: How to Generate and Exchange Secrets. In: 27th FOCS, pp. 162–167 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tal Malkin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindell, A.Y. (2008). Legally-Enforceable Fairness in Secure Two-Party Computation. In: Malkin, T. (eds) Topics in Cryptology – CT-RSA 2008. CT-RSA 2008. Lecture Notes in Computer Science, vol 4964. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79263-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79263-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79262-8

  • Online ISBN: 978-3-540-79263-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics