Skip to main content

Boosting AES Performance on a Tiny Processor Core

  • Conference paper
Topics in Cryptology – CT-RSA 2008 (CT-RSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4964))

Included in the following conference series:

Abstract

Notwithstanding the tremendous increase in performance of desktop computers, more and more computational work is performed on small embedded microprocessors. Particularly, tiny 8-bit microcontrollers are being employed in many different application settings ranging from cars over everyday appliances like doorlock systems or room climate controls to complex distributed setups like wireless sensor networks. In order to provide security for these applications, cryptographic algorithms need to be implemented on these microcontrollers. While efficient implementation is a general optimization goal, tiny embedded systems normally have further demands for low energy consumption, small code size, low RAM usage and possibly also short latency. In this work we propose a small enhancement for 8-bit Advanced Virtual RISC (AVR) cores, which improves the situation for all of these demands for implementations of the Advanced Encryption Standard. Particularly, a single 128-bit block can be encrypted or decrypted in under 1,300 clock cycles. Compared to a fast software implementation, this constitutes an increase of performance by a factor of up to 3.6. The hardware cost for the proposed extensions is limited to about 1.1 kGates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash (August 2007), http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

  2. Bertoni, G., Breveglieri, L., Roberto, F., Regazzoni, F.: Speeding Up AES By Extending a 32-Bit Processor Instruction Set. In: Proceedings of the 17th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2006), pp. 275–282. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  3. Buchty, R.: Cryptonite — A Programmable Crypto Processor Architecture for High-Bandwidth Applications. Ph.d. thesis, Technische Universität München, LRR (September 2002), http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/buchty.pdf

  4. Burke, J., McDonald, J., Austin, T.: Architectural Support for Fast Symmetric-Key Cryptography. In: ASPLOS-IX Proceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems, Cambridge, MA, USA, 2000, November 12-15, pp. 178–189. ACM Press, New York (2000)

    Chapter  Google Scholar 

  5. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Chia, C.-C., Wang, S.-S.: Efficient Design of an Embedded Microcontroller for Advanced Encryption Standard. In: Proceedings of the 2005 Workshop on Consumer Electronics and Signal Processing (WCEsp 2005) (2005), http://www.mee.chu.edu.tw/labweb/WCEsp2005/96.pdf

  7. Daemen, J., Rijmen, V.: The Design of Rijndael. In: Information Security and Cryptography, Springer, Heidelberg (2002)

    Google Scholar 

  8. Dhem, J.-F.: Design of an efficient public-key cryptographic library for RISC-based smart cards. PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (May 1998)

    Google Scholar 

  9. Eberle, H., Wander, A., Gura, N., Chang-Shantz, S., Gupta, V.: Architectural Extensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microprocessors. In: Proceedings of the 16th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2005), July 2005, pp. 343–349. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  10. Elbirt, A.J.: Fast and Efficient Implementation of AES via Instruction Set Extensions. In: Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW 2007), May 2007, vol. 1, pp. 396–403. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  11. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of Sand. IEE Proceedings on Information Security 152(1), 13–20 (2005)

    Article  Google Scholar 

  12. Gonzalez, R.E.: Xtensa: A Configurable and Extensible Processor. IEEE Micro 20(2), 60–70 (2000)

    Article  Google Scholar 

  13. McGregor, J.P., Lee, R.B.: Architectural Enhancements for Fast Subword Permutations with Repetitions in Cryptographic Applications. In: Proceedings of the International Conference on Computer Design (ICCD 2001), September 2001, pp. 453–461. IEEE, Los Alamitos (2001)

    Chapter  Google Scholar 

  14. Nadehara, K., Ikekawa, M., Kuroda, I.: Extended Instructions for the AES Cryptography and their Efficient Implementation. In: IEEE Workshop on Signal Processing Systems (SIPS 2004), Austin, Texas, USA, October 2004, pp. 152–157. IEEE Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  15. Nahum, E., O’Malley, S., Orman, H., Schroeppel, R.: Towards High Performance Cryptographic Software. In: Third IEEE Workshop on the Architecture and Implementation of High Performance Communication Subsystems, 1995 (HPCS 1995), August 1995, pp. 69–72. IEEE, Los Alamitos (1995)

    Chapter  Google Scholar 

  16. National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption Standard (November 2001), http://www.itl.nist.gov/fipspubs/

  17. Ravi, S., Raghunathan, A., Potlapally, N., Sankaradass, M.: System design methodologies for a wireless security processing platform. In: DAC 2002: Proceedings of the 39th Conference on Design Automation, pp. 777–782. ACM Press, New York (2002)

    Chapter  Google Scholar 

  18. Rinne, S., Eisenbarth, T., Paar, C.: Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers (June 2007), http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf

  19. Shi, Z., Lee, R.B.: Bit Permutation Instructions for Accelerating Software Cryptography. In: Proceedings of the 11th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2000), pp. 138–148. IEEE, Los Alamitos (2000)

    Google Scholar 

  20. Tillich, S., Feldhofer, M., Großschädl, J.: Area, Delay, and Power Characteristics of Standard-Cell Implementations of the AES S-Box. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 457–466. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Tillich, S., Großschädl, J.: Instruction Set Extensions for Efficient AES Implementation on 32-bit Processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 270–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Tillich, S., Großschädl, J.: Power-Analysis Resistant AES Implementation with Instruction Set Extensions. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 303–319. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Tillich, S., Großschädl, J.: VLSI Implementation of a Functional Unit to Accelerate ECC and AES on 32-bit Processors. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 40–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Wolkerstorfer, J.: An ASIC Implementation of the AES-MixColumn operation. In: Rössler, P., Döderlein, A. (eds.) Austrochip 2001, pp. 129–132 (2001); ISBN 3-9501517-0-2

    Google Scholar 

  25. Wu, L., Weaver, C., Austin, T.: CryptoManiac: A Fast Flexible Architecture for Secure Communication. In: ISCA 2001: Proceedings of the 28th annual international symposium on Computer architecture, pp. 110–119. ACM Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tal Malkin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tillich, S., Herbst, C. (2008). Boosting AES Performance on a Tiny Processor Core. In: Malkin, T. (eds) Topics in Cryptology – CT-RSA 2008. CT-RSA 2008. Lecture Notes in Computer Science, vol 4964. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79263-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79263-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79262-8

  • Online ISBN: 978-3-540-79263-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics