Skip to main content

Meaningful Mesh Segmentation Guided by the 3D Short-Cut Rule

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4975))

Included in the following conference series:

Abstract

Extended from the 2D silhouette-parsing short-cut rule [25], a 3D short-cut rule, which states “ as long as a cutting path mainly crosses local skeleton and lies in concave regions, the shorter path is (other things being equal) the better ” , is defined in the paper. Guided by the 3D short-cut rule, we propose a hierarchical model decomposition paradigm, which integrates the advantages of the skeleton-driven and minima-rule-based meaningful segmentation. Our method defines geometrical and topological functions of skeleton to locate initial critical cutting points, and then employs salient contours with negative minimal principal curvature values to determine natural boundary curves among parts. Sufficient experiments have been carried out on many meshes, and have shown that our framework could provide more perceptual results than pure skeleton-driven or minima-rule-based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shamir, A.: Segmentation Algorithms for 3D Boundary Meshes. In: EuroGraphics 2006, STAR, pp. 1–26. Blackwell Publishers, Malden (2006)

    Google Scholar 

  2. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh Segmentation - a Comparative Study. In: International Conference on. Shape Modeling and Applications 2006, pp. 14–25. IEEE Press, New York (2006)

    Google Scholar 

  3. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture Mapping Progressive Meshes. In: SIGGRAPH 2001, pp. 409–416. ACM Press, New York (2001)

    Chapter  Google Scholar 

  4. Zhang, E., Mischaikow, K., Turk, G.: Feature-Based Surface Parameterization and Texture Mapping. ACM Transactions on Graphics 24(1), 1–27 (2005)

    Article  Google Scholar 

  5. Katz, S., Tal, A.: Hierarchical Mesh Decomposition Using Fuzzy Clustering and Cuts. ACM Transactions on Graphics 22(3), 954–961 (2003)

    Article  Google Scholar 

  6. Lien, J.M., Keyser, J., Amato, N.M.: Simultaneous Shape Decomposition and Skeletonization. In: ACM symposium on Solid and physical modeling 2006, pp. 219–228. ACM Press, New York (2006)

    Chapter  Google Scholar 

  7. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational Shape Approximation. ACM Transactions on Graphics 23(3), 981–990 (2004)

    Article  Google Scholar 

  8. Mitani, J., Suzuki, H.: Making Papercraft Toys from Meshes Using Strip-based Approximate Unfolding. ACM Transactions on Graphics 23(3), 259–263 (2004)

    Article  Google Scholar 

  9. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S., Bao, H., Guo, B., Shum, H.-Y.: Subspace Gradient Domain Mesh Deformation. ACM Transactions on Graphics 25(3), 1126–1134 (2006)

    Article  Google Scholar 

  10. Li, X., Toon, T.W., Huang, Z.: Decomposing Polygon Meshes for Interactive Applications. In: ACM Symposium on Interactive 3D Graphics 2001, pp. 35–42. ACM Press, New York (2001)

    Chapter  Google Scholar 

  11. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical Mesh Segmentation Based-on Fitting Primitives. The Visual Computer 22(3), 181–193 (2006)

    Article  Google Scholar 

  12. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A Planar-Reflective Symmetry Transform for 3D Shapes. ACM Transactions on Graphics 25(3), 549–559 (2006)

    Article  Google Scholar 

  13. Mortaram, M., Patan, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber – A Method for a Multi-scale Decomposition of 3D Shape into Tubular Primitives and Bodies. In: ACM Symposium on Solid Modeling and Applications 2004, pp. 139–158. ACM Press, New York (2004)

    Google Scholar 

  14. Katz, S., Leifman, G., Tal, A.: Mesh Segmentation Using Feature Point and Core Extraction. The Visual Computer 21(8-10), 649–658 (2005)

    Article  Google Scholar 

  15. Liu, R., Zhang, H.: Segmentation of 3D Meshes Through Spectral Clustering. In: 12th Pacific Conference on Computer Graphics and Applications, pp. 298–305. IEEE Press, New York (2004)

    Google Scholar 

  16. Page, D.L., Koschan, A.F., Abidi, M.A.: Perception-based 3D Triangle Mesh Segmentation Using Fast Marching Watersheds. In: IEEE Computer Vision and Pattern Recognition, vol. II, pp. 27–32. IEEE Press, New York (2003)

    Google Scholar 

  17. Page, D.L., Abidi, M.A., Koschan, A.F., Zhang, Y.: Object Representation Using the Minima Rule and Superquadrics for Under Vehicle Inspection. In: The IEEE Latin American Conference on Robotics and Automation, pp. 91–97. IEEE Press, New York (2003)

    Google Scholar 

  18. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.-P.: Mesh Scissoring with Minima Rule and Part Salience. Computer Aided Geometric Design 22, 444–465 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cheng, Z.-Q., Liu, H.-F., Jin, S.-Y.: The Progressive Mesh Compression Based on Meaningful Segmentation. The Visual Computer 23(9-11), 651–660 (2007)

    Article  Google Scholar 

  20. Hoffman, D., Richards, W.A.: Parts of Recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  21. Hoffman, D., Signh, M.: Salience of Visual Parts. Cognition 63, 29–78 (1997)

    Article  Google Scholar 

  22. Cornea, D.N., Silver, D., Yuan, X.S., Balasubramanian, R.: Computing Hierarchical Curve-Skeletons of 3D Objects. The Visual Computer 21(11), 945–955 (2005)

    Article  Google Scholar 

  23. Tierny, J., Vandeborre, J.-P., Daoudi, M.: Topology Driven 3D Mesh Hierarchical Segmentation. In: The IEEE International Conference on Shape Modeling and Applications 2007, pp. 215–220. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  24. Cornea, D.N., Silver, D., Min, P.: Curve-Skeleton Applications. In: The IEEE Visualization 2005, pp. 23–28. IEEE Press, New York (2005)

    Google Scholar 

  25. Singh, M., Seyranian, G.D., Hoffman, D.D.: Parsing Silhouettes, the Short-Cut Rule. Perception and Psychophysics 61(4), 636–660 (1999)

    Google Scholar 

  26. Dachille, F., Kaufman, A.: Incremental Triangle Voxelization. In: Graphics Interface 2000, pp. 205–212. IEEE Press, New York (2000)

    Google Scholar 

  27. Kalvin, A., Schonberg, E., Schwartz, J.T., Sharir, M.: Two Dimensional Model Based Boundary Matching Using Footprints. International Journal of Robotics Research 5(4), 38–55 (1986)

    Article  Google Scholar 

  28. Stahl, S.: Introduction to Topology and Geometry. John Wiley & Sons, Hoboken (2004)

    Google Scholar 

  29. Bouix, S., Siddiqi, K.: Divergence-Based Medial Surfaces. In: The 6th European Conference on Computer Vision, 2000, pp. 603–618. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Falai Chen Bert Jüttler

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, ZQ., Li, B., Dang, G., Jin, SY. (2008). Meaningful Mesh Segmentation Guided by the 3D Short-Cut Rule. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79246-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79245-1

  • Online ISBN: 978-3-540-79246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics