Skip to main content

Lepp Terminal Centroid Method for Quality Triangulation: A Study on a New Algorithm

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4975))

Included in the following conference series:

Abstract

We introduce a new Lepp-Delaunay algorithm for quality triangulation. For every bad triangle t with smallest angle less than a threshold angle θ, a Lepp-search is used to find an associated convex terminal quadrilateral formed by the union of two terminal triangles which share a local longest edge (terminal edge) in the mesh. The centroid of this terminal quad is computed and Delaunay inserted in the mesh. The algorithm improves the behavior of a previous Lepp-Delaunay terminal edge midpoint algorithm. The centroid method computes significantly smaller triangulation than the terminal edge midpoint variant, produces globally better triangulations, and terminates for higher threshold angle θ (up to 36°). We present geometrical results which explain the better performance of the centroid method. Also the centroid method behaves better than the off-center algorithm for θ bigger than 25°.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chew, L.P.: Guaranteed-quality triangular meshes. Technical report TR-98-983, Computer Science Department, Cornell University, Ithaca, NY (1989)

    Google Scholar 

  2. George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing. In: Hermes (1998)

    Google Scholar 

  3. Borouchaki, H., George, P.L.: Aspects of 2-D Delaunay Mesh Generation. International Journal for Numerical Methods in Engineering 40, 1997 (1975)

    MathSciNet  Google Scholar 

  4. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. In: Cambridge Monographs on Applied and Computational Mathematics, Cambridge Univ. Press, Cambridge (2001)

    Google Scholar 

  5. Rivara, M.C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. International Journal for Numerical Methods in Engineering 20, 745–756 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rivara, M.C.: Selective refinement/derefinement algorithms for sequences of nested triangulations. International Journal for Numerical Methods in Engineering 28, 2889–2906 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rivara, M.C., Levin, C.: A 3d Refinement Algorithm for adaptive and multigrid Techniques. Communications in Applied Numerical Methods 8, 281–290 (1992)

    Article  MATH  Google Scholar 

  8. Rivara, M.C.: New mathematical tools and techniques for the refinement and / or improvement of unstructured triangulations. In: Proceedings 5th International Meshing Roundtable, Pittsburgh, pp. 77–86 (1996)

    Google Scholar 

  9. Rivara, M.C.: New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. International Journal for Numerical Methods in Engineering 40, 3313–3324 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rivara, M.C., Hitschfeld, N., Simpson, R.B.: Terminal edges Delaunay (small angle based) algorithm for the quality triangulation problem. Computer-Aided Design 33, 263–277 (2001)

    Article  Google Scholar 

  11. Rivara, M.C., Palma, M.: New LEPP Algorithms for Quality Polygon and Volume Triangulation: Implementation Issues and Practical Behavior. In: Cannan, S.A. (ed.) Trends unstructured mesh generation, Saigal, AMD, vol. 220, pp. 1–8 (1997)

    Google Scholar 

  12. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. of Algorithms 18, 548–585 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Baker, T.J.: Automatic mesh generation for complex three dimensional regions using a constrained Delaunay triangulation. Engineering with Computers 5, 161–175 (1989)

    Article  Google Scholar 

  14. Baker, T.J.: Triangulations, Mesh Generation and Point Placement Strategies. In: Caughey, D. (ed.) Computing the Future, pp. 61–75. John Wiley, Chichester (1995)

    Google Scholar 

  15. Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: First Workshop on Applied Computational Geometry, pp. 124–133. ACM Press, New York (1996)

    Google Scholar 

  16. Aurehammer, F., Katoh, N., Kokima, H., Ohsaki, M., Xu, Y.-F.: Approximating uniform triangular meshes in polygons. Theoretical Computer Science, 879–895 (2002)

    Google Scholar 

  17. Weatherill, N.P., Hassan, O.: Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering (2039)

    Google Scholar 

  18. Rosenberg, I.G., Stenger, F.: A lower bound on the angles of triangles constructed by bisecting the longest side. Mathematics of Computation 29, 390–395 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  19. Üngor, A.: Off-centers: a new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 152–161. Springer, Heidelberg (2001)

    Google Scholar 

  20. Simpson, B., Rivara, M.C.: Geometrical mesh improvement properties of Delaunay terminal edge refinement. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS, vol. 4077, pp. 536–544. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Stynes, M.: On Faster Convergence of the Bisection Method for certain Triangles. Mathematics of Computation 33, 1195–1202 (1979)

    Article  MathSciNet  Google Scholar 

  22. Stynes, M.: On Faster Convergence of the Bisection Method for all Triangles. Mathematics of Computation 35, 1195–1202 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rivara, M.C.: A study on Delaunay terminal edge method. In: Pébay, P.P. (ed.) Proceedings of the 15th International Roundtable, pp. 543–562. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Erten, H., Üngor, A.: Triangulations with locally optimal Steiner points. In: Belyaev, A., Garland, M. (eds.) Eurographics Symposium on Geometry Processing (2007)

    Google Scholar 

  25. Simpson, R.B.: Gometry Independence for a Meshing Engine for 2D Manifolds. International Journal for Numerical Methods in Engineering, 675–694 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Falai Chen Bert Jüttler

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivara, MC., Calderon, C. (2008). Lepp Terminal Centroid Method for Quality Triangulation: A Study on a New Algorithm. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79246-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79245-1

  • Online ISBN: 978-3-540-79246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics