Skip to main content

Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows

  • Conference paper
Book cover Advances in Geometric Modeling and Processing (GMP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4975))

Included in the following conference series:

Abstract

A variational formulation of a general form fourth order geometric partial differential equation is derived, and based on which a mixed finite element method is developed. Several surface modeling problems, including surface blending, hole filling and surface mesh refinement with the G 1 continuity, are taken into account. The used geometric partial differential equation is universal, containing several well-known geometric partial differential equations as its special cases. The proposed method is general which can be used to construct surfaces for geometric design as well as simulate the behaviors of various geometric PDEs. Experimental results show that it is simple, efficient and gives very desirable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C., Xu, G.: Anisotropic diffusion of surface and functions on surfaces. ACM Transaction on Graphics 22(1), 4–32 (2003)

    Article  Google Scholar 

  2. Bajaj, C., Xu, G., Warren, J.: Acoustics Scattering on Arbitrary Manifold Surfaces. In: Proceedings of Geometric Modeling and Processing, Theory and Application, Japan, pp. 73–82 (2002)

    Google Scholar 

  3. Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using partial differential equations. Computer Aided Design 21(3), 165–171 (1989)

    Article  MATH  Google Scholar 

  4. Bloor, M.I.G., Wilson, M.J.: Using partial differential equations to generate free-form surfaces. Computer Aided Design 22(4), 221–234 (1990)

    Article  Google Scholar 

  5. Chavel, I.: Riemannian Geometry – a Modern Introduction. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  6. Cirak, F., Ortiz, M.: C 1-conforming subdivision elements for finite deformation thin-shell analysis. Internat. J. Numer. Methods Engrg. 51(7), 813–833 (2001)

    Article  MATH  Google Scholar 

  7. Cirak, F., Ortiz, M., Schroder, P.: Subdivision Surfaces: A New Paradigm for Thin-Shell Finite-Element Analysis. Internat. J. Numer. Methods Engrg. 47, 2039–2072 (2000)

    Article  MATH  Google Scholar 

  8. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with boundary conditions. Computer Aided Geometric Design 21(5), 427–445 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Proceedings of Viz2000, IEEE Visualization, Salt Lake City, Utah, pp. 397–405 (2000)

    Google Scholar 

  10. Deckelnick, K., Dziuk, G.: A fully discrete numerical scheme for weighted mean curvature flow. Numerische Mathematik 91, 423–452 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH 1999, Los Angeles, USA, pp. 317–324 (1999)

    Google Scholar 

  12. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  13. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston, Basel, Berlin (1992)

    MATH  Google Scholar 

  14. Du, H., Qin, H.: Direct manipulation and interactive sculpting of PDE surfaces.  19(3), 261–270 (2000)

    Google Scholar 

  15. Du, H., Qin, H.: Dynamic PDE-based surface design using geometric and physical constraint. Graphical Models 67(1), 43–71 (2005)

    Article  MATH  Google Scholar 

  16. Dziuk, G.: An algorithm for evolutionary surfaces. Numerische Mathematik 58, 603–611 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Giaquinta, M., Hildebrandt, S.: Calculus of Variations. A Series of Comprehensive Studies in Mathematics, vol. I(310). Springer, Berlin (1996)

    Google Scholar 

  18. Kobbelt, L., Hesse, T., Prautzsch, H., Schweizerhof, K.: Iterative Mesh Generation for FE-computation on Free Form Surfaces. Engng. Comput. 14, 806–820 (1997)

    Article  MATH  Google Scholar 

  19. Lowe, T., Bloor, M., Wilson, M.: Functionality in blend design. Computer-Aided Design 22(10), 655–665 (1990)

    Article  MATH  Google Scholar 

  20. Saad, Y.: Iterative Methods for Sparse Linear Systems. Second Edition with corrections (2000)

    Google Scholar 

  21. Schneider, R., Kobbelt, L.: Generating Fair Meshes with G 1 Boundary conditions. In: Geometric Modeling and Processing, Hong Kong, China, pp. 251–261 (2000)

    Google Scholar 

  22. Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Computer Aided Geometric Design 18(4), 359–379 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Stam, J.: Fast Evaluation of Loop Triangular Subdivision Surfaces at Arbitrary Parameter Values. In: SIGGRAPH 1998 Proceedings (1998), CD-ROM supplement

    Google Scholar 

  24. Ugail, H., Bloor, M., Wilson, M.: Techniques for interactive design using the PDE method. ACM Transaction on Graphics 18(2), 195–212 (1999)

    Article  Google Scholar 

  25. Xu, G., Pan, Q., Bajaj, C.L.: Discrete surface modelling using partial differential equations. Computer Aided Geometric Design 23(2), 125–145 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xu, G., Pan, Q.: G 1 Surface Modelling Using Fourth Order Geometric Flows. Computer-Aided Design 38(4), 392–403 (2006)

    Article  Google Scholar 

  27. Xu, G., Zhang, Q.: Construction of Geometric Partial Differential Equations in Computational Geometry. Mathematica Numerica Sinica 28(4), 337–356 (2006)

    MathSciNet  Google Scholar 

  28. Xu, G., Zhang, Q.: A General Framework for Surface Modeling Using Geometric Partial Differential Equations. In: Computer Aided Geometric Design (to appear, 2007)

    Google Scholar 

  29. Zhang, Q., Xu, G.: Geometric partial differential equations for minimal curvature variation surfaces. In: Research Report No. ICM-06-03. Institute of Computational Mathematics, Chinese Academy of Sciences (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Falai Chen Bert Jüttler

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, G. (2008). Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79246-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79245-1

  • Online ISBN: 978-3-540-79246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics