Skip to main content

Modeling Marine Invasions: Current and Future Approaches

  • Chapter
Biological Invasions in Marine Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 204))

This chapter focuses on how dynamical mathematical modeling has been and could be useful in understanding marine biological invasions. Mathematical models have long been central to the development of general ecological and invasion theory (e.g., Case 1990; Hastings et al. 2005; Lewis and Kareiva 1993; Neubert and Parker 2004; Shigesada and Kawasaki 1997). Although the dynamics of marine systems can be challenging to observe and model (e.g., deYoung et al. 2004; Kinlan et al. 2005), mathematical models are nonetheless beginning to provide insights into invasion dynamics in marine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akçakaya HR (2001) Linking population-level risk assessment with landscape and habitat models. Sci Total Environ 274:283–291

    Article  PubMed  Google Scholar 

  • Akçakaya HR, McCarthy MA, Pearce JL (1995) Linking landscape data with population viability analysis – management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biol Conserv 73:169–176

    Google Scholar 

  • Akçakaya HR, Radeloff VC, Mlandenoff DJ, He HS (2004) Integrating landscape and metapopulation modeling approaches: viability of the sharp-tailed grouse in a dynamic landscape. Conserv Biol 18:526–537

    Article  Google Scholar 

  • Allee WC (1931) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago

    Google Scholar 

  • Amarasekare P, Nisbet RM (2001) Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am Nat 158:572–584

    Article  PubMed  CAS  Google Scholar 

  • Andersen MC (2005) Potential applications of population viability analysis to risk assessment for invasive species. Hum Ecol Risk Assess 11:1083–1095

    Article  Google Scholar 

  • Anderson RM, May (1991) Infectious diseases of humans. Oxford University Press, Oxford

    Google Scholar 

  • Andow DA, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landscape Ecol 4:177–188

    Article  Google Scholar 

  • Aussem A, Hill D (1999) Wedding connectionist and algorithmic modelling towards forecasting Caulerpa taxifolia development in the north-western Mediterranean sea. Ecol Model 120:225–236

    Article  Google Scholar 

  • Aussem A, Hill D (2000) Neural network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea. Neurocomputing 30:71–78

    Article  Google Scholar 

  • Barry KL, Levings CD (2002) Feasibility of using the RAMAS metapopulation model to assess the risk of a non-indigenous copepod (Pseudodiaptomus marinus) establishing in Vancouver Harbour from ballast water. Can Tech Rep Fish Aquat Sci 2401

    Google Scholar 

  • Bartell SM, Nair SK (2003) Establishment risks for invasive species. Risk Anal 24:833–845

    Article  Google Scholar 

  • Berdnikov SV, Selyutin VV, Vasilchenko VV, Caddy JF (1999) Trophodynamic model of the Black and Azov Sea pelagic ecosystem: consequences of the comb jelly, Mnemiopsis leidyi, invasion. Fish Res 42:261–289

    Article  Google Scholar 

  • Bolton TF, Graham WM (2004) Morphological variation among populations of an invasive jellyfish. Mar Ecol Progr Ser 278:125–139

    Article  Google Scholar 

  • Bossenbroek JM, Nekola JC, Kraft CE (2001) Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol Appl 11:1778–1788

    Article  Google Scholar 

  • Buhle ER, Margolis M, Ruesink JL (2005) Bang for buck: cost-effective control of invasive species with different life histories. Ecol Econ 52:355–366

    Google Scholar 

  • Burkhart SM, Slooten E (2003) Population viability analysis for Hector's dolphin (Cephalorhynchus hectori): a stochastic population model for local populations. N Z J Mar Freshwater Res 37:553–566

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Butterworth DS, Plaganyi EE (2004) A brief introduction to some approaches to multispecies/ecosystem modelling in the context of their possible application in the management of South African fisheries. Afr J Mar Sci 26:53–61

    Google Scholar 

  • Byers JE, Goldwasser L (2001) Exposing the mechanism and timing of impact of nonindigenous species on native species. Ecology 82:1330–1343

    Article  Google Scholar 

  • Byers JE, Noonburg EG (2003) Scale dependent effects of biotic resistance to biological invasion. Ecology 84:1428–1433

    Article  Google Scholar 

  • Case TJ (1990) Invasion resistance arises in strongly interacting species-rich model competition communities. Proc Natl Acad Sci U S 87:9610–9614

    Article  CAS  Google Scholar 

  • Case TJ (1991) Invasion resistance, species build-up and community collapse in metapopulation models with interspecies competition. Biol J Linn Soc 42:239–266

    Article  Google Scholar 

  • Case TJ (1999) An illustrated guide to theoretical ecology. Oxford University Press, Oxford

    Google Scholar 

  • Castillo GC, Li HW, Rossignol PA (2000) Absence of overall feedback in a benthic estuarine community: a system potentially buffered from impacts of biological invasions. Estuaries 23:275–291

    Article  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558

    Article  PubMed  CAS  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invas 8:1023–1037

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Connolly SR, Menge BA, Roughgarden J (2001) A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82:1799–1813

    Google Scholar 

  • Coquillard P, Thibaut T, Hill DRC, Gueugnot J, Mazel C, Coquillard Y (2000) Simulation of the mollusc ascoglossa Elysia subornata population dynamics: application to the potential biocontrol of Caulerpa taxifolia growth in the Mediterranean Sea. Ecol Model 135:1–16 Costello CJ, Solow AR (2003) On the pattern of discovery of introduced species. Proc Natl Acad Sci U S 100:3321–3323 Crowder LB, Crouse DT, Heppell SS, Martin TH (1994) Predicting the impact of turtle excluder devices on loggerhead sea turtle populations. Ecol Appl 4:437–445

    Article  Google Scholar 

  • Costello CJ, Solow AR (2003) On the pattern of discovery of introduced species. Proc Natl Acad Sci U S 100:3321–3323 Crowder LB, Crouse DT, Heppell SS, Martin TH (1994) Predicting the impact of turtle excluder devices on loggerhead sea turtle populations. Ecol Appl 4:437–445

    Article  CAS  Google Scholar 

  • Crowder LB, Crouse DT, Heppell SS, Martin TH (1994) Predicting the impact of turtle excluder devices on loggerhead sea turtle populations. Ecol Appl 4:437–445

    Article  Google Scholar 

  • Cuddington K, Hastings A (2004) Invasive engineers. Ecol Model 178:335–347

    Article  Google Scholar 

  • Daguin C, Borsa P (2000) Genetic relationships of Mytilus galloprovincialis Lamarck populations worldwide: evidence from nuclear-DNA markers. In: Crame JA (ed) The evolutionary biology of the Bivalvia. Geological Society, London, pp 389–397

    Google Scholar 

  • Davies KF, Chesson P, Harrison S, Inouye BD, Melbourne BA, Rice KJ (2005) Spatial heterogeneity explains the scale dependence of the native–exotic diversity relationship. Ecology 86:1602–1610

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–536

    Article  Google Scholar 

  • De Koeijer A, Diekmann O, Reijnders P (1998) Modelling the spread of phocine distemper virus among harbour seals. Bull Math Biol 60:585–596

    Article  PubMed  Google Scholar 

  • Dew JR, Berkson J, Hallerman EM, Allen KA Jr (2003) A model for assessing the likelihood of self-sustaining populations resulting from commercial production of triploid Suminoe oysters (Crassostrea ariakensis) in Chesapeake Bay. Fish Bull 101:758–768

    Google Scholar 

  • deYoung B, Heath M, Werner F, Chai F, Megrey B, Monfray P (2004) Challenges of modeling ocean basin ecosystems. Science 304:1463–1466

    Article  CAS  Google Scholar 

  • Donovan T, Welden CW (2001a) Spreadsheet exercises in conservation biology and landscape ecology. Sinauer, New York

    Google Scholar 

  • Donovan T, Welden CW (2001b) Spreadsheet exercises in ecology and evolution. Sinauer, New York

    Google Scholar 

  • Drake JA (1990) The mechanics of community assembly and succession. J Theor Biol 147:213–233

    Article  Google Scholar 

  • Drake JM, Lodge DM (2004) Global hot spots of biological invasions: evaluating options for ballast-water management. Proc R Soc London Ser B 271:575–580

    Article  Google Scholar 

  • Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invas 8:365–375

    Article  Google Scholar 

  • Drake JM, Lodge DM, Lewis M (2005) Theory and preliminary analysis of species invasions from ballast water: controlling discharge volume and location. Am Midl Nat 154:459–470

    Article  Google Scholar 

  • Dunstan PK, Johnson CR (2005) Predicting global dynamics from local interactions: individual-based models predict complex features of marine epibenthic communities. Ecol Model 186:221–233

    Article  Google Scholar 

  • Dunstan PK, Johnson CR (2006) Linking richness, community variability, and invasion resistance with patch size. Ecology 87:2842–2850

    Article  PubMed  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Fagan WF, Lewis MA, Neubert M, van den Driessche P (2002) Invasion theory and biological control. Ecol Lett 5:148–157

    Article  Google Scholar 

  • Ferson S, Burgman M (eds) (2003) Quantitative methods for conservation biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–369

    Google Scholar 

  • Floerl O, Inglis GJ, Hayden BJ (2005) A risk-based predictive tool to prevent accidental introductions of nonindigenous marine species. Environ Manag 35:765–778

    Article  Google Scholar 

  • Fox JW, Srivastava D (2006) Predicting local/regional richness relationships using island biogeography models. Oikos 113:376–382

    Article  Google Scholar 

  • Frésard M, Boncoeur J (2006) Costs and benefits of stock enhancement and biological invasion control: the case of the Bay of Brest scallop fishery. Aquat Living Resource 19:299–305

    Article  Google Scholar 

  • Fridley JD, Brown RL, Bruno JF (2004) Null models of exotic invasion and scale-dependent patterns of native and exotic species richness. Ecology 85:3215–3222

    Article  Google Scholar 

  • Fulton EA, Smith ADM, Johnson CR (2003) Effect of complexity on marine ecosystem models. Mar Ecol Progr Ser 253:1–16

    Article  Google Scholar 

  • Gascoigne J, Lipcius RN (2004) Allee effects in marine systems. Mar Ecol Progr Ser 269:49–59

    Article  Google Scholar 

  • Geller JB, Walton W, Grosholz E, Ruiz G (1997) Cryptic invasions of the crab Carcinus detected by molecular phylogeography. Mol Ecol 6:256–262

    Article  Google Scholar 

  • Gerber LR, Botsford LW, Hastings A, Possingham HP, Gaines SD, Palumbi SR, Andelman S (2003) Population models for marine reserve design: a retrospective and prospective synthesis. Ecol Appl 13:S47–S64

    Article  Google Scholar 

  • Grenfell BT, Lonergan ME, Harwood J (1992) Quantitative investigations of the epidemiology of phocine distemper virus (PDV) in European common seal populations. Sci Total Environ 115:15–29

    Article  PubMed  CAS  Google Scholar 

  • Grosholz ED (1996) Contrasting rates of spread for introduced species in terrestrial and marine systems. Ecology 77:1680–1686

    Article  Google Scholar 

  • Gucu AC (2002) Can overfishing be responsible for the successful establishment of Mnemiopsis leidyi in the Black Sea? Estuarine Coastal Shelf Sci 54:439–451

    Article  Google Scholar 

  • Guichard F, Levin SA, Hastings A, Siegel D (2004) Toward a dynamic metacommunity approach to marine reserve theory. Bioscience 54:1003–1011

    Article  Google Scholar 

  • Gutierrez AP, Pitcairn MJ, Ellis CK, Carruthers N, Ghezelbash R (2005) Evaluating biological control of yellow starthistle (Centaurea solstitialis) in California: a GIS based supply-demand demographic model. Biol Control 34:115–131

    Article  Google Scholar 

  • Haefner J (1996) Modeling biological systems: principles and applications. Chapman and Hall, New York

    Google Scholar 

  • Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends Ecol Evol 20:245–252

    Article  PubMed  Google Scholar 

  • Hall RJ, Hastings A, Ayres DR (2006) Explaining the explosion: modelling hybrid invasions. Proc R Soc B 273:1385–1389

    Article  PubMed  Google Scholar 

  • Hanski I, Gaggiotti OE (eds) (2004) Ecology, genetics, and evolution of metapopulations. Elsevier Academic Press

    Google Scholar 

  • Harding KC, Härkönen T, Caswell H (2002) The 2002 European seal plague: epidemiology and population consequences. Ecol Lett 5:727–732

    Article  Google Scholar 

  • Harding KC, Härkönen T, Pineda J (2003) Estimating quasi-extinction risk of European harbour seals: reply to Lonergan and Harwood (2003). Ecol Lett 6:894–897

    Article  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases – climate links and anthropogenic factors. Science 285:1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Hastings A (1996) Models of spatial spread: a synthesis. Biol Conserv 78:143–148

    Article  Google Scholar 

  • Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Article  Google Scholar 

  • Hayes KR (1998) Ecological risk assessment for ballast water introductions: a suggested approach. ICES J Mar Sci 55:201–212

    Article  Google Scholar 

  • Hayes KR (2002a) Identifying hazards in complex ecological systems. Part 1: Fault-tree analysis for biological invasions. Biol Invas 4:235–249

    Article  Google Scholar 

  • Hayes KR (2002b) Identifying hazards in complex ecological systems. Part 2: Infection modes and effects analysis for biological invasions. Biol Invas 4:251–261

    Article  Google Scholar 

  • Hayes KR (2003) Biosecurity and the role of risk assessment. In: Ruiz G, Carlton JT (eds) Invasive species: vectors and management strategies. Island Press, Washington, DC, pp 382–414

    Google Scholar 

  • He F, Gaston KJ, Connor EF, Srivastava DS (2005) The local-regional relationship: immigration, extinction, and scale. Ecology 86:360–365

    Article  Google Scholar 

  • Hedrick PW (2001) Invasion of transgenes from salmon or other genetically modified organisms into natural populations. Can J Fish Aquat Sci 58:841–844

    Article  Google Scholar 

  • Heide-Jørgensen M-P, Härkönen T (1992) Epizooitology of the seal disease in the eastern North Sea. J Appl Ecol 29:99–107

    Article  Google Scholar 

  • Herben T, Mandák B, Bímová K, Münzbergová Z (2004) Invasibility and species richness of a community: a neutral model and a survey of published data. Ecology 85:3223–3233

    Article  Google Scholar 

  • Herborg L-M, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ (2007) Predicting invasion risk using measures of introduction effort and environmental niche models. Ecol Appl 17(3):663–674

    Article  PubMed  Google Scholar 

  • Hewitt CL, Huxel GR (2002) Invasion success and community resistance in single and multiple species invasion models: do the models support the conclusions? Biol Invas 4:263–271

    Article  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur MA, O'Hara TD, Poore GCB, Ross DJ, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144:183–202

    Article  Google Scholar 

  • Hilborn R, Mangel M (1997) The ecological detective: confronting models with data. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hill D, Coquillard P, De Vaugelas J, Meinesz A (1998) An algorithmic model for invasive species: application to Caulerpa taxifolia (Vahl) C. Agardh development in the North-Western Mediterranean Sea. Ecol Model 109:251–265

    Article  Google Scholar 

  • Hollowed AB, Bax N, Beamish R, Collie JS, Fogarty M, Livingston PA, Pope J, Rice JC (2000) Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES J Mar Sci 57:707–719

    Article  Google Scholar 

  • Holmes EE (2004) Beyond theory to application and evaluation: diffusion approximations for population viability analysis. Ecol Appl 14:1272–1293

    Article  Google Scholar 

  • Holt J, Black R, Abdallah R (2006) A rigorous yet simple quantitative risk assessment method for quarantine pests and non-native organisms. Ann Appl Biol 149:167–173

    Article  Google Scholar 

  • Holyoak M, Leibold MA, Holt R (2005) Metacommunities: spatial dynamics and ecological communities. Chicago University Press

    Google Scholar 

  • Hutchings JA, Reynolds JD (2004) Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54:297–309

    Article  Google Scholar 

  • Inglis GJ, Hurren H, Oldman J, Haskew R (2006) Using habitat suitability index and particle dispersion models for early detection of marine invaders. Ecol Appl 16:1377–1390

    Article  PubMed  Google Scholar 

  • Jerde CL, Lewis MA (2007) Waiting for invasions: a framework for the arrival of non-indigenous species. Am Nat 170:1–9

    Article  PubMed  Google Scholar 

  • Johnson DR, Perry HM, Graham WM (2005) Using nowcast model currents to explore transport of non-indigenous jellyfish into the Gulf of Mexico. Mar Ecol Prog Ser 305:139–146

    Article  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contributions to the mathematical theory of epidemics. Proc R Soc A 115:700–721

    Article  Google Scholar 

  • Kinlan BP, Hastings A (2005) Rates of population spread and geographic range expansion: what exotic species tell us. In: Sax DF, Stachowicz J, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer, Sunderland, MA, p 495

    Google Scholar 

  • Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Divers Distrib 11:139–148

    Article  Google Scholar 

  • Knowler D (2005) Reassessing the costs of biological invasion: Mnemiopsis leidyi in the Black Sea. Ecol Econ 52:187–199

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042

    Article  Google Scholar 

  • Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins' model to marine ecology and fisheries science. Fish Fish 5:131–140

    Google Scholar 

  • Krkošek M, Lewis MA, Volpe JP (2005) Transmission dynamics of parasitic sea lice from farm to wild salmon. Proc R Soc London Ser B 272:689–696

    Article  Google Scholar 

  • Krkošek M, Lewis MA, Morton A, Frazer LN, Volpe JP (2006) Epizootics of wild fish induced by farm fish. Proc Natl Acad Sci U S 103:15506–15510

    Article  CAS  Google Scholar 

  • Krkošek M, Lauzon-Guay J-S, Lewis MA (2007) Relating dispersal and range expansion of California sea otters. Theoretical Population Biology: doi:10.1016/j.tpb.2007.1001.1008

    Google Scholar 

  • Landis WG (2003) Ecological risk assessment conceptual model formulation for nonindigenous species. Risk Anal 24:847–858

    Article  Google Scholar 

  • Lebedeva LP, Shushkina EA (1994) Modeling the effect of Mnemiopsis on the Black Sea plankton community. Oceanology 34:72–80

    Google Scholar 

  • Leung B, Lodge DM, Finoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc London B 269:2407–2413

    Article  Google Scholar 

  • Leung B, Bossenbroek JM, Lodge DM (2006) Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models. Biol Invas 8:241–254

    Article  Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297

    Article  CAS  Google Scholar 

  • Levine JB, D'Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326

    Article  Google Scholar 

  • Levins D (1968) Evolution in a changing environment. Princeton University Press, Princeton

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Levins R (1970) Extinction. In: Gerstenhaber M (ed) Some mathematical problems in biology. American Mathematical Society, Providence, R.I., pp 75–107

    Google Scholar 

  • Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43:141–158

    Article  Google Scholar 

  • Lewis MA, Neubert MG, Caswell H, Clark J, Shea K (2005) A guide to calculating discrete-time invasion rates from data. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasions biology: reciprocal approaches to nature. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lonergan M, Harwood J (2003) The potential effects of repeated outbreaks of phocine distemper among harbour seals: a response to Harding et al. (2002). Ecol Lett 6:889–893

    Article  Google Scholar 

  • Lubina JA, Levin SA (1988) The spread of a reinvading species: range expansion in the California sea otter. Am Nat 131:526–543

    Article  Google Scholar 

  • Lundquist CJ, Botsford LW (2004) Model projections of the fishery implications of the Allee effect in broadcast spawners. Ecol Appl 14:929–941

    Article  Google Scholar 

  • Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream populations. SIAM J Appl Math 65:1305–1327

    Article  Google Scholar 

  • Lutscher F, McCauley E, Lewis MA (2007) Spatial patterns and coexistence mechanisms in systems with unidirectional flow Theor Popul Biol 71:267–277

    Article  PubMed  Google Scholar 

  • MacArthur RM, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • MacIsaac HJ, Robbins TC, Lewis MA (2002) Modeling ships' ballast water as invasion threats to the Great Lakes. Can J Fish Aquat Sci 59:1245–1256

    Article  Google Scholar 

  • Malchow H, Hilker FM, Petrovskii SV, Brauer K (2004) Oscillations and waves in a virally infected plankton system. Part I: The lysogenic stage. Ecol Complex 1:211–223

    Article  Google Scholar 

  • McEvoy PB, Coombs EM (1999) Biological control of plant invaders: regional patterns, field experiments, and structured population models. Ecol Appl 9:387–401

    Article  Google Scholar 

  • Medvinsky AB, Petrovskii SV, Tikhonova IA, Malchow H, Li B-L (2002) Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev 44:311–370

    Article  Google Scholar 

  • Melbourne BA, Cornell H V, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94

    Article  PubMed  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    Article  PubMed  Google Scholar 

  • Morozov AY, Nezlin NP, Petrovskii SV (2005) Invasion of a top predator into an epipelagic ecosystem can bring a paradoxical top-down trophic control. Biol Invas 7:845–861

    Article  Google Scholar 

  • Morris WF, Doak DF (2003) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Murray AG, Parslow JS (1999) Modelling of nutrient impacts in Port Phillip Bay – a semi-enclosed marine Australian ecosystem. Mar Freshwater Res 50:597–611

    Article  CAS  Google Scholar 

  • Neubert MG, Parker IM (2004) Projecting rates of spread for invasive species. Risk Anal 24:817–831

    Article  PubMed  Google Scholar 

  • Oguz T, Ducklow HW, Purcell JE, Malanotte-Rizzoli P (2001) Modeling the response of top-down control exerted by gelatinous carnivores on the Black Sea pelagic food web. J Geophys Res C 106:4543–4564

    Article  Google Scholar 

  • Okubo A, Maini P, Williamson MH, Murray JD (1989) On the spatial spread of the grey squirrel in Britain. Proc R Soc London B 238:113–125

    CAS  Google Scholar 

  • Olden JD, Poff NL (2004) Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85:1867–1875

    Article  Google Scholar 

  • Owen M, Lewis MA (2001) How predation can slow, stop or reverse a prey invasion. Bull Math Biol 63:655–684

    Article  PubMed  CAS  Google Scholar 

  • Pachepsky E, Lutscher F, Nisbet RM, Lewis MA (2005) Persistence, spread and the drift paradox. Theor Popul Biol 67:61–73

    Article  PubMed  CAS  Google Scholar 

  • Parker IM (2000) Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecol Appl 10:726–743

    Article  Google Scholar 

  • Parry GD, Black KP, Hatton DN, Cohen BF (2001) Factors influencing the distribution of the exotic seastar Asterias amurensis during the early phase of its invasion of Port Phillip Bay, 1: Hydrodynamic factors. Mar Freshwater Resource Inst Rep 38, Queenscliff, Australia, 18 pp

    Google Scholar 

  • Perrings C (2005) Mitigation and adaptation strategies for the control of biological invasions. Ecol Econ 52:315–325

    Google Scholar 

  • Peterson AT (2003) Predicting the geography of species' invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Post WM, Pimm SL (1983) Community assembly and food web stability. Math Biosci 64:169–192

    Article  Google Scholar 

  • Powell MR (2004) Risk assessment for invasive plant species. Weed Technol 18S:1305–1308

    Article  Google Scholar 

  • Pranovi F, Libralato S, Raicevich S, Granzotto A, Pastres R, Giovanardi O (2003) Mechanical clam dredging in Venice lagoon: ecosystem effects evaluated with a trophic mass-balance model. Mar Biol 143:393–403

    Article  Google Scholar 

  • Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Can J Fish Aquat Sci 58:2513–2525

    Article  Google Scholar 

  • Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431

    Article  Google Scholar 

  • Rose KA, Cowan JH (2003) Data, models, and decisions in US Marine Fisheries management: lessons for ecologists. Annu Rev Ecol Evol Syst 34:127–151

    Article  Google Scholar 

  • Rouget M, Richardson DM (2003) A semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724

    Article  PubMed  Google Scholar 

  • Roughgarden J (1998) Primer of ecological theory. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Roxburgh SH, Shea K, Wilson JB (2004) The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85:359–371

    Article  Google Scholar 

  • Ruesink JL, Collado-Vides L (2006) Modeling the increase and control of Caulerpa taxifolia, an invasive marine macroalga. Biol Invas 8:309–325

    Article  Google Scholar 

  • Rudnick D, Veldhuizen T, Tullis R, Culver C, Hieb K, Tsukimura B (2005) A life history model for the San Francisco Estuary population of the Chinese mitten crab, Eriocheir sinensis (Decapoda: Grapsoidea). Biol Invas 7:333–350

    Article  Google Scholar 

  • Ruth M, Lindholm J (eds) (2002) Dynamic modeling for marine conservation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13:S159–S169

    Article  Google Scholar 

  • Sharov AA (2004) Bioeconomics of managing the spread of exotic pest species with barrier zones. Risk Anal 24:879–892

    Article  PubMed  Google Scholar 

  • Wootton JT (2004) Markov chain models predict the consequences of experimental extinctions. Ecol Lett 7:653–660

    Article  Google Scholar 

  • Sharov AA, Liebhold AM (1998) Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecol Appl 8:833–845

    Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trend Ecol Evol 17:170–176

    Article  Google Scholar 

  • Shea K, Kelly D (1998) Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand. Ecol Appl 8:824–832

    Article  Google Scholar 

  • Shea K, Possingham H (2000) Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. J Appl Ecol 37:77–86

    Article  Google Scholar 

  • Sherratt JA, Eagan BT, Lewis MA (1997) Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality? Philos Trans R Soc London B 352:21–38

    Article  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford, UK

    Google Scholar 

  • Siegel D, Kinlan BP, Gaylord B, Gaines SD (2003) Lagrangian descriptions of marine larval dispersion. Mar Ecol Prog Ser 260:83–96

    Article  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions in nonindigenous species: invasional meltdown? Biol Invas 1:21–32

    Article  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions in nonindigenous species: invasional meltdown? Biol Invas 1:21–32

    Article  Google Scholar 

  • Solow A, Costello C (2004) Estimating the rate of species introductions from the discovery record. Ecology 85:1822–1825

    Article  Google Scholar 

  • Stachowicz JJ, Byrnes JE (2006) Species diversity, invasion success, and ecosystem functioning: disentangling the influence of resource competition, facilitation, and extrinsic factors. Mar Ecol Prog Ser 311:251–262

    Article  Google Scholar 

  • Swinton J, Harwood J, Grenfell BT, Gilligan CA (1998) Persistence thresholds for phocine distemper virus infection in harbour seal Phoca vitulina metapopulations. J Anim Ecol 67:54–68

    Article  Google Scholar 

  • Taylor CM, Hastings A (2004) Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J Appl Ecol 41:1049–1057

    Article  Google Scholar 

  • Taylor CM, Davis HG, Civille JC, Grevstad FS, Hastings A (2004) Consequences of an Allee effect in the invasion of a Pacific estuary by Spartina alterniflora. Ecology 85:3254–3266

    Article  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci U S 101:10854–10861

    Article  CAS  Google Scholar 

  • Tobin PC, Whitmire SL, Johnson DM, Bjørnstad ON, Liebhold AM (2007) Invasion speed is affected by geographical variation in the strength of Allee effects. Ecol Lett 10:36–43

    Article  PubMed  Google Scholar 

  • Viard F, Ellien C, Dupont L (2006) Dispersal ability and invasion success of Crepidula fornicata in a single gulf: insights from genetic markers and larval-dispersal model. Helgol Mar Res 60:144–152

    Article  Google Scholar 

  • Vincent C, Mouillot D, Lauret M, Chi TD, Troussellier M, Aliaume C (2006) Contribution of exotic species, environmental factors and spatial components to the macrophyte assemblages in a Mediterranean lagoon (Thau lagoon, Southern France). Ecol Model 193:119–131

    Article  Google Scholar 

  • Volovik YS, Volovik AP, Myrzoyan ZA (1995) Modelling the Mnemiopsis sp. population in the Azov Sea. In: Harris R (ed) Zooplankton production. Proceedings of the ICES Symposium on Zooplankton Production, Plymouth (UK), 15–19 Aug 1994. Academic Press, London, pp 735–746

    Google Scholar 

  • Wang MH, Kot M (2001) Speeds of invasion in a model with strong or weak Allee effects. Math Biosci 171:83–97

    Article  PubMed  CAS  Google Scholar 

  • Wilson NLW, Anton J (2006) Combining risk assessment and economics in managing a sanitary-phytosanitary risk. A J Agric Econ 88:194–202

    Article  Google Scholar 

  • With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815

    Article  PubMed  Google Scholar 

  • Wonham MJ, Pachepsky E (2006) A null model of temporal trends in biological invasion records. Ecol Lett 9:663–672

    Article  PubMed  Google Scholar 

  • Wonham MJ, Bailey SA, Lewis MA, MacIsaac HJ (2005a) Modelling the invasion risk of diapausing organisms transported in ballast sediments. Can J Fish Aquat Sci 62:2386–2398

    Article  Google Scholar 

  • Wonham MJ, Lewis MA, MacIsaac HJ (2005b) Minimizing invasion risk by reducing propagule pressure: a model for ballast-water exchange. Front Ecol Environ 3:473–478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marjorie J. Wonham or Mark A. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wonham, M.J., Lewis, M.A. (2009). Modeling Marine Invasions: Current and Future Approaches. In: Rilov, G., Crooks, J.A. (eds) Biological Invasions in Marine Ecosystems. Ecological Studies, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79236-9_4

Download citation

Publish with us

Policies and ethics