Skip to main content

Klinische Anwendungen von mikrobiologischen Schnelltests

  • Chapter
Book cover POCT — Patientennahe Labordiagnostik
  • 1270 Accesses

Auszug

Nachdem in den letzten Jahren va. klinisch-chemische Parameter (z.B. Blutglukose, Blutgase, Elektrolyte, kardiale Marker) von den Ausweitungen im POCT-Bereich profitiert haben, hält diese Form der Analytik mehr und mehr auch im Bereich der Infektiologie Einzug. In Gang gesetzt und befördert wurde dieser Trend zum einen durch methodische Verbesserungen und die dadurch ermöglichte Miniaturisierung und Vereinfachung der Testsysteme (▸ Kap. 14), zum anderen durch die dringlicher werdenden Forderungen vieler Ärzte nach sofort verfügbaren Testergebnissen. Mittlerweile hat das Spektrum der am POC zur Verfügung stehenden Parameter einen beachtlichen Umfang erreicht (• Tab. 32.1):

  • infektiöse Mononukleose (heterophile Antikörper) [133–136],

  • Clostridium-difficile-Toxin[137–139],

  • Chlamydia trachomatis [140–144],

  • Legionella pneumophila [145],

  • Streptococcus pyogenes [146],

  • Streptococcus agalactiae [147],

  • Pneumokokken [148–150],

  • Neisseria gonorrhoeae [151–154],

  • InfluenzaA/B[155],

  • respiratorisches Synzytialvirus [156–160],

  • Rotavirus[161–164],

  • HI-Virus[165],

  • Plasmodium falciparum und Plasmodium vivax[166–170],

  • Shigatoxinnachweis[171–173].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Sektion V

  1. Scherbaum WA, Kiess W (Hrsg.) (2006) Praxis-Leitlinien der Deutschen Diabetes-Gesellschaft. Diabetologie und Stoffwechsel 1(Suppl 2); Evidenzbasierte Leitlinien DDG, aktualisierte Version auf den Webseiten der DDG: http://www.deutsche-diabetes-gesellschaft.de/ Evidenzbasierte Leitlinien/Definition

  2. Burrin JM, Alberti KG (1990). What is blood glucose: can it be measured? Diab Med 7: 199–206

    CAS  Google Scholar 

  3. Rao LV, Jakubiak F, Sidwell JS, Winkelmann JW, Snyder ML (2005) Accuracy evaluation of a new glucometer with automated hematocrit measurement and correction. Clin Chim Acta 356:178–183

    PubMed  CAS  Google Scholar 

  4. Harrison JG (1995) Accuracy of fingerstick glucose values in shock patients. Am J Crit Care 4:44–48

    PubMed  Google Scholar 

  5. Kulkarni A, Saxena M, Price G, O’Leary MJ, Jaques T, Myburgh JA (2005) Analysis of blood glucose measurements using capillary and arterial blood samples in intensive care patients. Intensive Care Med 31:142–145

    PubMed  Google Scholar 

  6. Kuwa K, Nakayama T, Hoshino T, Tominaga M (2001) Realationships of glucose concentrations in capillary whole blood, venous whole blood and venous plasma. Clin Chim Acta 307:187–192

    PubMed  CAS  Google Scholar 

  7. Finkielmann JD, Oyen LJ, Afessa B (2005) Agreement between bedside blood and plasma glucose measurement in the ICU setting. Chest 127:1749–1751

    Google Scholar 

  8. Bürgi W (1974) Oraler Glukosetoleranztest: unterschiedlicher Verlauf der kapillären und venösen Belastungskurven. Schweiz Med Wochenschr 104:1698–1699

    PubMed  Google Scholar 

  9. Kerner W, Brückel J, Böhm BO (2004) Definition, Klassifikation und Diagnostik des Diabetes mellitus. Aktualisierte Version auf den Webseiten der DDG: http://www.deutsche-diabetesgesellschaft.de/Evidenzbasierte_Leitlinien/Definition

    Google Scholar 

  10. Mikesh LM, Bruns DE (2008) Stabilization of glucose in blood specimen: mechanism of delay in fluoride inhibition of glycolysis. Clin Chem 54:930–932

    PubMed  CAS  Google Scholar 

  11. Bundesärztekammer (2008) Richtlinien der Bundesärztekammer zur Qualitätssicherung quantitativer laboratoriumsmedizinischer Untersuchungen. Dtsch Ärztebl 105:A341–A355

    Google Scholar 

  12. Van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    PubMed  Google Scholar 

  13. Van den Berghe G, Wilmer A, Hermans G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461

    PubMed  Google Scholar 

  14. Ingels C, Debaveye Y, Milants I et al. (2006) Strict blood glucose control with insulin during intensive care after cardiac surgery: impact on 4-years survival, dependency on medical care, and quality-of-life. Eur Heart J 27:2716–2724

    PubMed  Google Scholar 

  15. Vanhorebeek I, Langouche L, Van den Berghe G (2007) Tight blood glucose control: what is the evidence? Crit Care Med 35(9 Suppl):S496–S502

    PubMed  Google Scholar 

  16. Van den Berghe G (2008) Insulin therapy in the intensive care unit should be targeted to maintain blood glucose between 4.4 mmol/l and 6.1 mmol/l. Diabetologia 51: 911–915

    PubMed  Google Scholar 

  17. Brunkhorst FM, Engel C, Bloos F et al. (2008) German Competence Network Sepsis (Sep-Net). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    PubMed  CAS  Google Scholar 

  18. Schetz M, Vanhorebeek I, Wouters PJ, Wilmer A, Van den Berghe G (2008) Tight blood glucose control Is renoprotective in critically ill patients. J Am Soc Nephrol 19:571–578

    PubMed  CAS  Google Scholar 

  19. Khan AI, Vasquez Y, Gray J, Wians FH Jr, Kroll MH (2006) The variability of results between point-of-care testing glucose meters and the central laboratory analyzer. Arch Pathol Lab Med 130:1527–1532

    PubMed  CAS  Google Scholar 

  20. Arabadjief D, Nicholas JH (2006) Assessing glucose meter accuracy. Curr Med Res Opin 22: 2167–2174

    PubMed  CAS  Google Scholar 

  21. Brunkhorst FM, Wahl HG (2006) Blood glucose measurements in the critically ill: more than just a blood draw. Crit Care 10:178

    PubMed  Google Scholar 

  22. Dungan K, Chapman J, Braithwaite SS, Buse J (2007) Glucose measurements: Confounding issues in setting targets for inpatient management. Diabetes Care 30:403–409

    PubMed  Google Scholar 

  23. Jungheim K, Koschinsky T (2002) Glucose monitoring at the arm: risky delays of hypoglycemia and hyperglycemia detection. Diabetes Care 25:956–960

    PubMed  Google Scholar 

  24. Jungheim K, Koschinsky T (2002) Glucose monitoring at the thenar: evaluation of upper dermal blood glucose kinetics during rapid systemic blood glucose changes. Horm Metab Res 34:325–329

    PubMed  CAS  Google Scholar 

  25. Koschinsky T, Jungheim K, Heinemann L (2003) Glucose sensors and the alternate site testing-like phenomenon: relationship between rapid blood glucose changes and glucose sensor signals. Diabetes Technol Ther 5:829–842

    PubMed  CAS  Google Scholar 

  26. Bina DM, Anderson RL, Johnson ML, Bergenstal RM, Kendall DM (2003) Clinical impact of prandial state, exercise, and site preparation on the equivalence of alternative-site blood glucose testing. Diabetes Care 26:981–985

    PubMed  Google Scholar 

  27. Haupt A, Berg B, Paschen P et al. (2005) The effects of skin temperature and testing site on blood glucose measurements taken by a modern blood glucose monitoring device. Diabetes Technol Ther 7:597–601

    PubMed  CAS  Google Scholar 

  28. Heinemann G, Heinemann L (2006) Sensoren zum kontinuierlichen Glukosemonitoring in Praxis und Forschung. In: Schnelle O (ed) Insulinpumpen und Sensoren: Aktuelle Entwicklungen. Uni-Med, Bremen London Boston, S 48–77

    Google Scholar 

  29. D’Archangelo MJ (2008) New guideline supports the development and evaluation of continuous interstitial glucose monitoring devices. J Diab Science Technol 2:332–334

    Google Scholar 

  30. CLSI (2008) Performance metrics for continuous interstitial glucose monitoring. Proposed Guideline. CLSI document POCT5-P. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  31. Calatzis A, Heesen M, Spannagl M (2003) Patientennahe Sofortdiagnostik von Hämostaseveränderungen in der Anästhesie und Intensivmedizin. Anaesthesist 52:229–237

    PubMed  CAS  Google Scholar 

  32. Avidan MS, Alcock El, Da Fonseca JH et al. (2004) Comparison of structured use of routine laboratory tests or near-patient assessment with clinical judgement in the management of bleeding after cardiac surgery. Br J Anaesth 92:178–186

    PubMed  CAS  Google Scholar 

  33. Beholz S, Grubitzsch H, Bergmann B, Wollert HG, Eckel L (1999) Hemostasis management by use of Hepcon/HMS: increased bleeding without increased need for blood transfusion. Thorac Cardiovasc Surg 47:322–327

    PubMed  CAS  Google Scholar 

  34. Zucker ML (2007) The National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for Point of Care Coagulation Testing. Point of Care 6:223–226

    Google Scholar 

  35. Koscielny J, Ziemer S, Radtke H et al. (2004) A practical concept for preoperative identification of patients with impaired primary hemostasis. Clin Appl Thromb Hemost 10: 195–204

    PubMed  CAS  Google Scholar 

  36. Simon DI, Liu CB, Ganz P et al. (2001) A comparative study of light transmission aggregometry and automated bedside platelet function assays in patients undergoing percutaneous coronary intervention and receiving abciximab, eptifibatide, or tirofiban. Catheter Cardiovasc Interv 52: 425–432

    PubMed  CAS  Google Scholar 

  37. Smith JW, Steinhubl SR, Lincoff AM et al. (1999) Rapid platelet-function assay: an automated and quantitative cartridge-based method. Circulation 99: 620–625

    PubMed  CAS  Google Scholar 

  38. Steinhubl SR, Talley JD, Braden GA et al. (2001) Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation 103: 2572–2578

    PubMed  CAS  Google Scholar 

  39. Nitu-Whalley IC, Lee CA, Brown SA, Riddell A, Hermans C (2003) The role of the platelet function analyser (PFA-100) in the characterization of patients with von Willebrand’s disease and its relationships with von Willebrand factor and the ABO blood group. Haemophilia 9: 298–302

    PubMed  CAS  Google Scholar 

  40. Hayward CP, Harrison P, Cattaneo M, Ortel TL, Rao AK (2006) Platelet function analyzed (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J Thromb Haemost 4: 312–319

    PubMed  CAS  Google Scholar 

  41. Toth O, Calatzis A, Penz S, Losonzzy H, Siess W (2006) Multiplate electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost 96: 781–788

    PubMed  CAS  Google Scholar 

  42. Murray DJ, Brosnahan WJ, Pennell B, Kapalanski D, Weiler JM, Olson J (1997) Heparin detection by the activated coagulation time: a comparison of the sensitivity of coagulation tests and heparin assays. J Cardiothorac Vasc Anesth 11: 24–28

    PubMed  CAS  Google Scholar 

  43. Leyvi G, Shore-Lesserson L, Harrington D, Vela-Cantos F, Hossain S (2001) An investigation of a new activated clotting time »MAX-ACT« in patients undergoing extracorporeal circulation. Anesth Analg 92: 578–583

    PubMed  CAS  Google Scholar 

  44. Ferring M, Reber G, de Moerloose P, Merlani P, Diby M, Ricou B (2001) Point of care and central laboratory determinations of the aPTT are not interchangeable in surgical intensive care patients. Can J Anaesth 48: 1155–1160

    PubMed  CAS  Google Scholar 

  45. Bosch YP, Ganuschak YM, de Jong DS (2006) Comparison of ACT point-of-care measurements: repeatability and agreement. Perfusion 1: 27–31

    Google Scholar 

  46. Christensen TD, Johnsen SP, Hjortdal VE, Hasenkam JM (2007) Self-management of oral anticoagulant therapy: A systematic review and meta-analysis. Int J Cardiol 118: 54–61

    PubMed  Google Scholar 

  47. Heneghan C, Alonso-Coello P, Garcia-Alamino JM, Perera R, Meats E, Glasziou P (2006) Self-monitoring of oral antico agulation: a systematic review and meta-analysis. Lancet 367: 404–411

    PubMed  CAS  Google Scholar 

  48. Mc Cahon D, Murray ET, Jowett S et al. (2007) Patient self management of oral anticoagulation in routine care in the UK. J Clin Pathol 60: 1263–1267

    CAS  Google Scholar 

  49. Harter H (1948) Blutgerinnungstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren. Klin Wochenschr 26: 577–583

    Google Scholar 

  50. Cammerer U, Dietrich W, Rampf T, Braun SL, Richter JA (2003) The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery. Anesth Analg 96: 51–57

    PubMed  Google Scholar 

  51. Statistisches Bundesamt (Hrsg.) (2001) Statistisches Jahrbuch 2001. Für die Bundesrepublik Deutschland. Metzler-Poeschel, Stuttgart

    Google Scholar 

  52. McMurray JJ, Stewart S (2000) Epidemiology, aetiology, and prognosis of heart failure. Heart 83: 596–602

    PubMed  CAS  Google Scholar 

  53. Remme WJ, Swedberg K (2001) Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22: 1527–1560

    PubMed  CAS  Google Scholar 

  54. Hunt SA, Abraham WT, Chin MH et al. (2005) American College of Cardiology; American Heart Association Task Force on Practice Guidelines; American College of Chest Physicians; International Society for Heart and Lung Transplantation: Heart Rhythm Society. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure), developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112: 154–235

    Google Scholar 

  55. The Joint European Society of Cardiology/American College of Cardiology Committee (2000) Myocardial infarction redefined — A consensus document of The Joint European Society of Cardiology/American College of Cardiology committee for the Redefinition of Myocardial Infarction. Eur Heart J 21: 1502–1513

    Google Scholar 

  56. Apple FS, Wu AHB, Jaffe AS (2002) European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: How to use existing assays clinically and for clinical trials. J Am Heart 144: 981–986

    Google Scholar 

  57. Panteghini M, Pagani F, Yeo KT et al. (2004) Committee on Standardization of Markers of Cardiac Damage of the IFCC. Evaluation of imprecision for cardiac troponin assays at lowrange concentrations. Clin Chem 50: 327–332

    PubMed  CAS  Google Scholar 

  58. Pelsers MM, Hermens WT, Glatz JF (2005) Fatty acid-binding proteins as plasma markers of tissue injury. Clin Chim Acta 352: 15–35

    PubMed  CAS  Google Scholar 

  59. Rembek M, Goch A, Chizyński K, Goch JH (2006) Estimation of clinical reliability and diagnostic usefulness of human fatty acid-binding protein in acute coronary syndromes. Pol Merkur Lekarski 125: 418–422

    Google Scholar 

  60. Braunwald E, Antman EM, Beasley JW et al. (2002) ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction — summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With unstable Angina). J Am Coll Cardiol 40: 1366–1374

    PubMed  Google Scholar 

  61. Antman EM, Anbe DT, Armstrong PW et al. (2004) ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction — executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 44: 671–719; erratum in: J Am Coll Cardiol 2005; 45: 1376

    PubMed  Google Scholar 

  62. Tang WH, Francis GS, Morrow DA et al. (2007) National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: Clinical utilization of cardiac biomarker testing in heart failure. Circulation 116: 99–109

    Google Scholar 

  63. Meyer G, Roy PM Sors H (2003) Laboratory tests in the diagnosis of pulmonary embolism. Respiration 70: 125–132

    PubMed  Google Scholar 

  64. Harrison A, Amundson S (2005) Evaluation and management of the acutely dyspneic patient: the role of biomarkers. Am J Emerg Med 23: 371–378

    PubMed  Google Scholar 

  65. Christenson RH on behalf of the Committee on Evidence Based Laboratory Medicine of the International Federation for Clinical Chemistry Laboratory Medicine (2007) Evidencebased laboratory medicine — a guide for critical evaluation of in vitro laboratory testing. Ann Clin Biochem 44: 111–130

    Google Scholar 

  66. AWMF online (2008) Diagnostik und Therapie der Bein-und Beckenvenenthrombose und Lungenembolie. Leitlinien Angiologie 2008; http://www.leitlinien.net

  67. Kilgore ML, Steindel SJ, Smith JA (1998) Evaluating stattesting options in an academic health center: therapeutic turnaround time and staff satisfaction. Clin Chem 44: 1597–1603

    PubMed  CAS  Google Scholar 

  68. Müller MM, Hackl W, Griesmacher A (1999) Point-of Care-Testing — das Intensivlaboratorium. Anaesthesist 48: 3–8

    PubMed  Google Scholar 

  69. Nichols JH, Kickler TS, Dyer KL et al. (2000) Clinical outcomes of point-of-care testing in the interventional radiology and invasive cardiology setting. Clin Chem 46: 543–550

    PubMed  CAS  Google Scholar 

  70. Parvin CA, Lo SF, Deuser SM, Weaver LG, Lewis LM, Scott MG (1996) Impact of point-of-care testing on patients’ length of stay in a large emergency department. Clin Chem 42: 711–717

    PubMed  CAS  Google Scholar 

  71. Schlüter B, Junker R (2003) Labordiagnostik: Schneller ist nicht immer besser. Dtsch Ärztebl 100: A87–A89

    Google Scholar 

  72. van Heyningen C, Watson ID, Morrice AE (1999) Point-of-care testing outcomes in an emergency department. Clin Chem 45: 437–438

    PubMed  Google Scholar 

  73. Nichols JH (2007) Point of care testing. Clin Lab Med 27: 893–908

    PubMed  Google Scholar 

  74. Zander BE (2002) Diagnostische und therapeutische Bedeutung von Base Excess und Laktatkonzentration. Anästhesiol Intensivmed Notfallmed Schmerzther 37: 343–346

    PubMed  CAS  Google Scholar 

  75. Instrumentation Laboratory (2006) GEM Premier 4000. Reference Guide. Version 1.0; Instrumentation Laboratory, Kirchheim

    Google Scholar 

  76. Gosselin R, Owings JT, White RH et al. (2000) A comparison of point-of-care instruments designed for monitoring oral anticoagulation with standard laboratory methods. Thromb Haemost 83: 698–703

    PubMed  CAS  Google Scholar 

  77. St. Louis P (2001) Point-of care blood gas analyzers: a performance evaluation. Clin Chim Acta 307: 139–144

    PubMed  CAS  Google Scholar 

  78. Tang Z, Louie RF, Lee JH, Lee DM, Miller EE, Kost GJ (2000) Oxygen effects on glucose measurements with a reference analyzer and three handheld meters. Diabetes Technol Ther 2: 349–362

    PubMed  CAS  Google Scholar 

  79. van den Besselaar AM, Meeuwisse-Braun J, Schaefer-van Mansfeld H, van Rijn, Wittevee E (2000) A comparison between capillary and venous blood international normalized ratio determinations in a portable prothrombin time device. Blood Coagul Fibrinolysis 11: 559–562

    PubMed  Google Scholar 

  80. Bénéteau-Burnat B, Bocque MC, Lorin A, Martin C, Vaubourdolle M (2004) Evaluation of the blood gas analyzer Gem Premier 3000. Clin Chem Lab Med 42: 96–101

    PubMed  Google Scholar 

  81. Fitzgibbon F, Brown A, Meenan BJ (2007) Assessment of user perspectives of cardiac point of care technologies in chest pain diagnosis. Conf Proc IEEE Eng Med Biol Soc 1: 1762–1765

    Google Scholar 

  82. Hirsch J, Wendt T, Kuhly P, Schaffartzik W (2001) Point of care testing: measurement of coagulation. Anaesthesia 56: 760–763

    PubMed  CAS  Google Scholar 

  83. Bardenheuer M, Obertacke U, Waydhas C, Nast-Kolb D (2000) Epidemiologie des Schwerstverletzten: eine prospektive Erfassung der präklinischen und klinischen Versorgung. Unfallchirurg 103: 355–363

    PubMed  CAS  Google Scholar 

  84. Nichols JH, Christenson RH, Clarke W et al. (2007) National Academy of Clinical Biochemistry. Executive summary. The National Academy of Clinical Biochemistry laboratory medicine practice guidelines: evidence-based practice for point-of-care testing. Clin Chim Acta 379: 14–28

    PubMed  CAS  Google Scholar 

  85. Kendall J, Reeves B, Clancy M (1998) Point of care testing: randomised controlled trial of clinical outcome. BMJ 316: 1052–1057

    PubMed  CAS  Google Scholar 

  86. Price CP (2001) Point-of-care testing. Impact on medical outcomes. Clin Lab Med 21: 285–303

    PubMed  CAS  Google Scholar 

  87. Alex CP, Manto JC, Garland JS (1998) Clinical utility of a bedside blood analyzer for measuring blood chemistry values in neonates. J Perinatol 18: 45–48

    PubMed  CAS  Google Scholar 

  88. Collison PD, John C, Lynch S et al. (2004) A prospective randomized trial of point-of-care testing on the coronary care unit. Ann Clin Biochem 41: 397–404

    Google Scholar 

  89. Despotis GJ, Joist JH, Goodnough LT (1997) Monitoring of hemostasis in cardiac surgical patients. Impact of point-of-care testing on blood loss and transfusion outcomes. Clin Chem 43: 1684–1696

    PubMed  CAS  Google Scholar 

  90. Lee-Lewandrowski E, Corboy D, Lewandrowski K, Sinclair J, McDermot S, Benzer TI (2003) Implementation of a point-of-care satellit elaboratory in the emergency department of an academic medical center. Impact on test turnaround time and patient emergency department length of stay. Arch Pathol Lab Med 127: 456–460

    PubMed  Google Scholar 

  91. Rossi AF, Khan D (2004) Point of care testing: improving pediatric outcomes. Clin Biochem 37: 456–461

    PubMed  Google Scholar 

  92. Salem M, Chernow B, Burke R, Stacey JA, Slogoff M, Sood S (1991) Bedside diagnostic blood testing. Its accuracy, rapidity, and utility in blood conservation. JAMA 266: 382–389

    PubMed  CAS  Google Scholar 

  93. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA (1999) Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg 88: 312–319

    PubMed  CAS  Google Scholar 

  94. Cox CJ (2001) Acute Care Testing. Blood gases and electrolytes at the point of care. Clin Lab Med 21: 321–335

    PubMed  CAS  Google Scholar 

  95. Plebani M, Carraro P (1997) Mistakes in stat laboratory: types and frequency. Clin Chem 43: 1348–1351

    PubMed  CAS  Google Scholar 

  96. Schaffartzik W (2007) »Base excess« Parameter mit herausragender klinischer Bedeutung. Anaesthesist 56: 478–481

    PubMed  CAS  Google Scholar 

  97. Külpmann W-R (2003) Nachweis von Drogen und Medikamenten im Urin mittels Schnelltest. Dtsch Ärztebl 100: A1138–A1140, B956, C898

    Google Scholar 

  98. Schütz H (1999) Screening von Drogen und Arzneimitteln mit Imunoassays. Wissenschaftliche Verlagsabteilung Abbott GmbH, Wiesbaden

    Google Scholar 

  99. http://www.rosita.org

  100. http://www.samhsa.gov

  101. http://www.Itg.uk.net/admin/files/IVDD_guidelines.pdf

  102. Moffat AC, Osselton MD, Widdop B (eds) (2004) Clarke’s Analysis of Drugs and Poisons, 3rd edn. Pharmaceutical Press, London

    Google Scholar 

  103. Pfleger K, Maurer HH, Weber A (2000) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  104. Statistisches Bundesamt, Wiesbaden. http://www.destatis.de

  105. Gässler N (2007) POCT in der Neonatologie, Seminar 412 »Point-of-Care-Testing (POCT) — Aktueller Stand« auf dem 39. Weltkongress MEDICA, 17.11.2007, Düsseldorf

    Google Scholar 

  106. Schlebusch H, Fahnenstich H, Niesen M (1993) Laboratoriumsuntersuchungen bei Frühgeborenen. DG Klinische Chemie Mitteilungen 24: 47–67

    Google Scholar 

  107. Haymond MW (1989) Hypoglycemia in infants and children. Endocrin Metab Clin North Am 18: 211–252

    CAS  Google Scholar 

  108. Bhutani VK, Johnson L, Sivieri EM (1999) Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and nearterm newborns. Pediatr 103: 6–14

    CAS  Google Scholar 

  109. American Academy of Pediatrics (2004) Management of hyperbilirubinemia of the newborn infant 35 or more weeks of gestation. Pediatr 114: 297–316

    Google Scholar 

  110. Hallemann H, Putz K, Schweiger G, Spitzer S, Strohmeier M (2005) Technical aspects of bilirubin determination in whole blood. Point of Care 4: 9–10

    Google Scholar 

  111. Schweizerische Gesellschaft für Neonatologie (2006) Abklärung und Behandlung von ikterischen Neugeborenen ab 35 0/7 Schwangerschaftswochen. Paediatrica 17: 26–29

    Google Scholar 

  112. Soldin SJ, Brugnara C, Wong EC (eds) Pediatric Reference Intervals, 6th edn. AACC Press, Washington, DC

    Google Scholar 

  113. Green A, Morgan I, Gray J (eds) (2003) Neonatology & Laboratory Medicine. ACB Venture Publications, London

    Google Scholar 

  114. Mäkelä E, Takala T, Suominen P et al. (2008) Hematological parameters in preterm infants from birth to 16 weeks of age with reference to iron balance. Clin Chem Lab Med 46: 551–557

    PubMed  Google Scholar 

  115. Hicks J (2005) Point-of-careTesting: Einführungsvortrag zum AACC-Symposium Oak Ridge Conference, 20.04.2005, Baltimore, MD

    Google Scholar 

  116. Boege F, Schmidt-Rothe H, Scherberich JE (1993) Harnwegsdiagnostik in der ärztlichen Praxis. Dtsch Ärztebl 90: A1653–1667

    Google Scholar 

  117. Beeram MR, Dhanireddy R (1991) Urinanalysis: direct versus diaper collection. Clin. Pediat 30: 278–280

    PubMed  CAS  Google Scholar 

  118. Hoffmann W, Regenbogen C, Edel H, Guder WG (1994) Diagnostics strategies in urinalysis. Kidney Int 46 (Suppl 47): 111–114

    Google Scholar 

  119. Hasslacher C (1990) Diagnostik und Therapie der diabetischen Nephropathie. Fortschr Med 108: 694–697

    PubMed  CAS  Google Scholar 

  120. The Expert Committee on the diagnosis and classification of diabetes mellitus (1999) Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 22: S5–S19

    Google Scholar 

  121. Umpierrez GE, Khajari M, Kitabchi AE (1996) Review: diabetic ketoacidosis and hyperglycemic nonketotic syndrome. Am J Med Sci 311: 225–233

    PubMed  CAS  Google Scholar 

  122. Schmidt E, Schmid FW (1984) Diagnostik des Ikterus. Dtsch Med Wschr 109: 139–144

    PubMed  CAS  Google Scholar 

  123. Martini AM (1987) Erkrankungen der Leber und der Gallenwege. In: Gross R, Schölmerich P, Gerok W (Hrsg.) Lehrbuch der Inneren Medizin. Schattauer, Stuttgart, S 617–675

    Google Scholar 

  124. ECLM (2000) European Urinanalysis Guidelines: Summary. Scand J Clin Lab Invest 60, Supplement 231: 1–96

    Google Scholar 

  125. Gillat DA, O’Reilly PH (1987) Hematuria analyzed: a prospective study. J R Soc Med 80: 559–562

    Google Scholar 

  126. Brühl P, Mikolai D, Vahlensieck W (1979) Problemdiagnose Leukozyturie. Urologe A 18: 278–232

    PubMed  Google Scholar 

  127. Parsons M, Newman DJ, Pugin M, Newall RG, Price CP (1999) Performance of a reagent strip device for quantitation of the urine albumin:cr eatinine ratio in a point of care setting. Clin Nephrol 51: 220–227

    PubMed  CAS  Google Scholar 

  128. Dorizzi RM, Caputo M (1998) Measurement of urine relative density using refractometer and reagent stripes. Clin Chem Lab Med 36: 925–928

    PubMed  CAS  Google Scholar 

  129. Anonymus (2002) Tests for drugs of abuse. Med Lett Drugs Ther 44: 71–73

    Google Scholar 

  130. Oehr P, Schroeder A (2006) Nutzen des qualitativen NMP22 BladderChek Tests für Diagnostik von Patienten mit Hämaturie und Verdacht auf Harnblasentumor: Ergebnisse einer praxisorientierten Ringstudie. Tumordiagn Ther 27: 205–210

    Google Scholar 

  131. Döll M (2003) Wie kann man eine Belastung des Körpers mit freien Radikalen festellen? In: Döll M (Hrsg) Das Antioxidantienwunder. Herbig, München, S 262–266

    Google Scholar 

  132. Bruu AL, Hjetland R, Holter E et al. (2000) Evaluation of 12 commercial tests for detection of Epstein-Barr virus-specific and heterophile antibodies. Clin Diagn Lab Immunol 7: 451–456

    PubMed  CAS  Google Scholar 

  133. Svahn A, Magnusson M, Jägdahl L, Schloss L, Kahlmeter G, Linde A (1997) Evaluation of three commercial enzyme-linked immunosorbent assays and two latex agglutination assays for diagnosis of primary Epstein-Barr virus infection. J Clin Microbiol 35: 2728–2732

    PubMed  CAS  Google Scholar 

  134. Gutierrez J, Rodriquez M, Maroto C, Piedrola G (1997) Reliability of four methods for the diagnosis of acute infection by Epstein-Barr virus. J Clin Lab Anal 11: 78–81

    PubMed  CAS  Google Scholar 

  135. Farhat SE, Finn S, Chua R et al. (1993) Rapid detection of infectious mononucleosis-associated heterophile antibodies by a novel immunochromato graphic assay and a latex agglutination test. J Clin Microbiol 31: 1597–1600

    PubMed  CAS  Google Scholar 

  136. Vanpoucke H, De Baere T, Claeys G et al. (2001) Evaluation of six commercial assays for the rapid detection of Clostridium difficile toxin and/or antigen in stool specimens. Clin Microbiol Infect 7: 55–64

    PubMed  CAS  Google Scholar 

  137. O’Connor D, Hynes P, Cormican M, Collins E, Corbett-Feeney G, Cassidy M (2001) Evaluation of methods for detection of toxins in specimens of feces submitted for diagnosis of Clostridium difficile-associated diarrhea. J Clin Microbiol 39: 2846–2849

    Google Scholar 

  138. van den Berg RJ, Bruijnnesteijn van Coppenraet LS, Gerritsen HJ, Endtz HP, van der Vorm ER, Kuijper EJ (2005) Prospective multicenter evaluation of a new immunoassay and realtime PCR for rapid diagnosis of Clostridium difficile-associated diarrhea in hospitalized patients. J Clin Microbiol 43: 5338–5340

    PubMed  Google Scholar 

  139. Mahilum-Tapay L, Laitila V, Wawrzyniak JJ et al. (2007) New point of care chlamydia rapid test — bridging the gap between diagnosis and treatment: performance evaluation study. BMJ 335: 1190–1194

    PubMed  Google Scholar 

  140. Saison F, Mahilum-Tapay L, Michel CE et al. (2007) Prevalence of Chlamydia trachomatis infection among low-and high-risk Filipino women and performance of Chlamydia rapid tests in resource-limited settings. J Clin Microbiol 45: 4011–4017

    PubMed  Google Scholar 

  141. Yin YP, Peeling RW, Chen XS et al. (2006) Clinic-based evaluation of Clearview Chlamydia MF for detection of Chlamydia trachomatis in vaginal and cervical specimens from women at high risk in China. Sex Transm Infect 82(Suppl 5): v33–v37

    PubMed  Google Scholar 

  142. Rani R, Corbitt G, Killough R, Curless E (2002) Is there any role for rapid tests for Chlamydia trachomatis? Int J STD AIDS 13: 22–24

    PubMed  Google Scholar 

  143. Widjaja S, Cohen S, Brady WE et al. (1999) Evaluation of a rapid assay for detection of Chlamydia trachomatis infections in outpatient clinics in South Kalimantan, Indonesia. J Clin Microbiol 37: 4183–4185

    PubMed  CAS  Google Scholar 

  144. Ewig S, Tuschy P, Fätkenheuer G (2002) Diagnosis and treatment of Legionella pneumonia. Pneumologie 56: 695–703

    PubMed  CAS  Google Scholar 

  145. Reinert RR (2007) Rapid streptococcal antigen detection tests. J Lab Med 31: 280–293

    CAS  Google Scholar 

  146. Honest H, Sharma S, Khan KS (2006) Rapid tests for group B streptococcus colonization in laboring women: a systematic review. Pediatrics 117: 1055–1066

    PubMed  Google Scholar 

  147. Gutiérrez F, Masiá M, Rodriguez JC et al. (2003) Evaluation of the immunochromatographic Binax NOW assay for detection of Streptococcus pneumoniae urinary antigen in a prospective study of community-acquired pneumonia in Spain. Clin Infect Dis 36: 286–292

    PubMed  Google Scholar 

  148. Lasocki S, Scanvic A, LeTurdu F et al. (2006) Evaluation of the Binax NOW Streptococcus pneumoniae urinary antigen assay in intensive care patients hospitalized for pneumonia. Intensive Care Med 32: 1766–1772

    PubMed  Google Scholar 

  149. Smith MD, Derrington P, Evans R et al. (2003) Rapid diagnosis of bacteremic pneumococcal infections in adults by using the Binax NOW Streptococcus pneumoniae urinary antigen test: a prospective, controlled clinical evaluation J Clin Microbiol 41: 2810–2813

    PubMed  CAS  Google Scholar 

  150. Alary M, Gbenafa-Agossa C, Agina G et al. (2006) Evaluation of a rapid point-of-care test for the detection of gonococcal infection among female sex workers in Benin. Sex Transm Infect 82 (Suppl 5): v29–v32

    PubMed  Google Scholar 

  151. Benzaken AS, Galban ES, Atunes W, Dutra JC et al. (2006) Diagnosis of gonococcal infection in high risk women using a rapid test. Sex Transm Infect 82 (Suppl 5): v26–v28

    PubMed  Google Scholar 

  152. Suzuki K, Matsumoto T, Murakami H, Tateda K, Ishii N, Yamaguchi K (2004) Evaluation of a rapid antigen detection test for Neisseria gonorrhoeae in urine sediment for diagnosis of gonococcal urethritis in males. J Infect Chemother 10: 208–211

    PubMed  CAS  Google Scholar 

  153. Vickerman W, Peeling RW, Watts C, Mabey D (2005) Detection of gonococcal infection: pros and cons of a rapid test. Mol Diagn 9: 175–179

    PubMed  Google Scholar 

  154. Schweiger B (2006) Influenza rapid tests — advantages and limitations. J Lab Med 30: 219–225

    Google Scholar 

  155. Ohm-Smith MJ, Nassos PS, Haller BL (2004) Evaluation of the Binax NOW, BD Directigen, and BD Directigen EZ assays for detection of respiratory syncytial virus. J Clin Microbiol 42: 2996–2999

    PubMed  CAS  Google Scholar 

  156. Casiano-Colon AE, Hulbert BB, Mayer TK, Walsh EE, Falsey AR (2003) Lack of sensitivity of rapid antigen tests for the diagnosis of respiratory syncytial virus infection in adults. J Clin Virol 28: 169–174

    PubMed  CAS  Google Scholar 

  157. Schützle H, Weigl J, Puppe W, Forster J, Berner R (2008) Diagnostic performance of a rapid antigen test for RSV in compar ison with a 19-valent multiplex RT-PCR ELISA in children with acute respiratory tract infections. Eur J Pediatr 167: 745–749

    PubMed  Google Scholar 

  158. Rahman M, Vandermause MF, Kieke BA, Belongia EA (2007) Performance of Binax NOW Flu A and B and direct fluorescent assay in comparison with a composite of viral culture or reverse transcription polymerase chain reaction for detection of influenza infection during the 2006 to 2007 season. Diagn Microbiol Infect Dis 2007 Nov 28 [Epub ahead of print]

    Google Scholar 

  159. Jonathan N (2006) Diagnostic utility of BINAX NOW RSV — an evaluation of the diagnostic performance of BINAX NOW RSV in comparison with cell culture and direct immunofluorescence. Ann Clin Microbiol Antimicrob 5: 13

    PubMed  Google Scholar 

  160. Brandt CD, Arndt CW, Evans GL et al. (1987) Evaluation of a latex test for rotavirus detection. J Clin Microbiol 25: 8000–8002.

    Google Scholar 

  161. Weitzel T, Reither K, Mockenhaupt FP et al. (2007) Field evaluation of a rota-and adenovirus immunochromatographic assay using stool samples from children with acute diarrhea in Ghana. J Clin Microbiol 45: 2695–2697

    PubMed  Google Scholar 

  162. Nguyen TA, Khamrin P, Takanashi S et al. (2007) Evaluation of immunochromatography tests for detection of rotavirus and norovirus among Vietnamese children with acute gastroenteritis and the emergence of a novel norovirus Gll.4 variant. J Trop Pediatr 53: 264–269

    PubMed  Google Scholar 

  163. Bon F, Kaplon J, Metzger MH, Potheir P (2007) Evaluation of seven immunochromatographic assays for the rapid detection of human rotaviruses in fecal specimens. Pathol Biol (Paris) 55: 149–153

    CAS  Google Scholar 

  164. Branson BM (2003) Point-of-care rapid tests for HIV antibody. J Lab Med 27: 288–295

    Google Scholar 

  165. Iqbal J, Khalid N, Hira PR (2002) Comparison of two commercial assays with expert microscopy for confirmation of symptomatically diagnosed malaria. J Clin Microbiol 40: 4675–4678

    PubMed  Google Scholar 

  166. Palmer CJ, Lindo JF, Klaskala WI et al. (1998) Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J Clin Microbiol 36: 203–206

    PubMed  CAS  Google Scholar 

  167. Gatti S, Gramegna M, Bisoffi Z et al. (2007) A comparison of three diagnostic techniques for malaria: a rapid diagnostic test (NOW Malaria), PCR and microscopy. Ann Trop Med Parasitol 101: 195–204

    PubMed  CAS  Google Scholar 

  168. Cruciani M, Nardi S, Malena M, Bosco O, Serpelloni G, Mengoli C (2004) Systematic review of the accuracy of the ParaSight-F test in the diagnosis of Plasmodium falciparum malaria. Med Sci Monit 10: MT81–MT88

    PubMed  Google Scholar 

  169. Schmidt WP (2003) Malaria rapid tests—perspectives for malaria endemic and nonendemic regions. J Lab Med 296–301

    Google Scholar 

  170. Teel LD, Daly JA, Jerris RC et al. (2007) Rapid detection of Shiga toxin-producing Escherichia coli by optical immunoassay. J Clin Microbiol 45: 3377–3380

    PubMed  CAS  Google Scholar 

  171. Mackenzie AM, Lebel P, Orrbine PC et al. (1998) Sensitivities and specificities of premier E. coli O157 and premier EHEC enzyme immunoassays for diagnosis of infection with verotxin (Shiga-like toxin)-producing Escherichia coli. The SYNSORB Pk Study investigators. J Clin Microbiol 36: 1608–1611

    PubMed  CAS  Google Scholar 

  172. Kehl KS, Havens P, Behnke CE, Acheson DW (1997) Evaluation of the premier EHEC assay for detection of Shiga toxin-producing Escherichia coli. J Clin Microbiol 35: 2051–2054

    PubMed  CAS  Google Scholar 

  173. Kumar A, Roberts D, Wood KE et al. (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596

    PubMed  Google Scholar 

  174. Nicholson KG, Aoki FY, Osterhaus AD et al. (2000) Efficacy and safety of oseltamivir in treatment of acute influenza: a rondomized controlled trail. Neuraminidase inhibitor flu treatment investigator group. Lancet 355: 1845–1850

    PubMed  CAS  Google Scholar 

  175. Adcock PM, Stout GG, Hauck MA et al. (1997) Effect of rapid viral diagnosis on the management of children hospitalized with Iower respiratory tract infection. Pediatr Infect Dis 16: 842–846

    CAS  Google Scholar 

  176. Swain GR, McDonal RA, Pfister RJ, Gradus MS, Sedmak GV, Singh A (2004) Decision analysis: point-of-care chlamydia testing vs. laboratory-based methods. Clin Med Res 1: 29–35

    Google Scholar 

  177. Warpakowski A (2006) Ärztezeitung online. Schnelltest—mehr Patienten erfahren HIV-Status. Ausgabe am 21.08.2006; http://www.aerztezeitung.de/docs/2006/08/21/145a1102.asp

  178. Friedewald S, Finke EJ, Dobler G (2006) Near patient testing in exceptional situations. J Lab Med 30: 211–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Stürenburg, E. (2008). Klinische Anwendungen von mikrobiologischen Schnelltests. In: Luppa, P.B., Schlebusch, H. (eds) POCT — Patientennahe Labordiagnostik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79152-2_32

Download citation

Publish with us

Policies and ethics