Skip to main content

Visual Topological Map Building in Self-similar Environments

  • Chapter
Informatics in Control Automation and Robotics

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 15))

Abstract

This chapter describes a method to automatically build topological maps for robot navigation out of a sequence of visual observations taken from a camera mounted on the robot. This direct non-metrical approach relies completely on the detection of loop closings, i.e. repeated visitations of one particular place. In natural environments, visual loop closing can be very hard, for two reasons. Firstly, the environment at one place can look differently at different time instances due to illumination changes and viewpoint differences. Secondly, there can be different places that look alike, i.e. the environment is self-similar. Here we propose a method that combines state-of-the-art visual comparison techniques and evidence collection based on Dempster-Shafer probability theory to tackle this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tomatis, N., Nourbakhsh, I.R., Siegwart, R.: Hybrid simultaneous localization and map building: closing the loop with multi-hypotheses tracking. In: ICRA, 1. (2002) 2749–2754

    Google Scholar 

  2. Tolman, E.C.: Cognitive maps in rats and men. In: Psychological Review (55). (1948) 189–208

    Article  Google Scholar 

  3. Nagatani, K., Choset, H., Thrun, S.: Towards exact localization without explicit localization with the generalized voronoi graph. In: ICRA (1). (1998) 342–348

    Google Scholar 

  4. Ranganathan, A., Menegatti, E., Dellaert, F.: Bayesian inference in the space of topological maps. In: IEEE Transactions on Robotics 22(1). (2006)

    Google Scholar 

  5. Shatkay, H., Kaelbling, L.P.: Learning topological maps with weak local odometric information. In: IJCAI (2). (1997) 920–929

    Google Scholar 

  6. Koenig, S., Simmons, R.: Unsupervised learning of probabilistic models for robot navigation. In: ICRA (1). (1996) 2301–2308

    Google Scholar 

  7. Tapus, A., Siegwart, R.: Incremental robot mapping with fingerprints of places. In: IROS (1). (2005) 2429–2434

    Google Scholar 

  8. Zivkovic, Z., Bakker, B., Kröse, B.: Hierarchical map building using visual landmarks and geometric constraints. In: IROS (1). (2005) 7–12

    Google Scholar 

  9. Wahlgren, C., Duckett, T.: Topological mapping for mobile robots using omnidirectional vision. In: SWAR (1). (2005) 3441–3447

    Google Scholar 

  10. Goedemé, T., Nuttin, M., Tuytelaars, T., Van Gool, L.: Vision based intelligent wheelchair control: the role of vision and inertial sensing in topological navigation. In: Journal of Robotic Systems, 21(2). (2004) 85–94

    Article  Google Scholar 

  11. Chen, C., Wang, H.: Appearance-based topological bayesian inference for loop-closing detection in cross-country environment. In: IROS (1). (2005) 322–327

    Google Scholar 

  12. Beevers, K., Huang, W.: Loop closing in topological maps. In: ICRA (1). (2005) 4367–4372

    Google Scholar 

  13. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. In: The Annals of Statistics (28). (1967) 325–339

    MathSciNet  Google Scholar 

  14. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  15. Goedemé, T., Nuttin, M., Tuytelaars, T., Van Gool, L.: Markerless computer vision based localization using automatically generated topological maps. In: European Navigation Conference GNSS (1). (2004) 235–243

    Google Scholar 

  16. Goedemé, T., Tuytelaars, T., Vanacker, G., Nuttin, M., Van Gool, L.: Feature based omnidirectional sparse visual path following. In: International Conference on Intelligent Robots and Systems, IROS 2005. (2005) 1003–1008

    Article  Google Scholar 

  17. Lowe, D.: Distinctive image features from scale-invariant keypoints. In: IJCV (60). (2004) 91–110

    Article  Google Scholar 

  18. Goedemé, T., Tuytelaars, T., Van Gool, L.: Fast wide baseline matching with constrained camera position. In: Conference on Computer Vision and Pattern Recognition (1). (2004) 24–29

    Google Scholar 

  19. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. Proceedings of the ninth European Conference on Computer Vision (1). (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goedemé, T., Tuytelaars, T., Gool, L.V. (2008). Visual Topological Map Building in Self-similar Environments. In: Cetto, J.A., Ferrier, JL., Costa dias Pereira, J., Filipe, J. (eds) Informatics in Control Automation and Robotics. Lecture Notes Electrical Engineering, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79142-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79142-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79141-6

  • Online ISBN: 978-3-540-79142-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics