Skip to main content

Additive Representability of Finite Measurement Structures

  • Chapter
The Mathematics of Preference, Choice and Order

Part of the book series: Studies in Choice and Welfare ((WELFARE))

The theory of additive conjoint measurement takes its roots in the papers by Debreu, (1960) and Luce and Tukey (1964). It is presented in books (Pfanzagl (1968); Fishburn (1970); Krantz, Luce, Suppes, & Tversky, 1971; Luce, Krantz, Suppes, & Tversky, 1998; Suppes, Krantz, Luce, & Tversky, 1988; Roberts, 1979; Narens, 1985) and excellent surveys, of which Fishburn's survey (1999) is the most recent. The goal of the present paper is twofold: we would like to describe some recent developments that took place after Fishburn's survey was published, and to attract attention to several questions posed by Fishburn that remain unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auger, M. (2005). Finite linear qualitative probability. Report on The Summer Scholarship Project. Department of Mathematics, The University of Auckland.

    Google Scholar 

  • Bosma, W., Cannon, J., & Playoust, C. (1997). The MAGMA algebra system I: The user language. Journal of Symbolic Computation, 24, 235–265.

    Article  Google Scholar 

  • Christian, R., & Slinko, A. (2005). Answers to two questions of Fishburn on subset comparisons in comparative probability orderings. In Proceedings of the fourth international symposium on imprecise probabilities and their applications (ISIPTA 05)(pp. 117–124). Pittsburg, PA.

    Google Scholar 

  • Christian, R., Conder, M., & Slinko, A. (2007). Flippable pairs and subset comparisons in comparative probability orderings.Order, 24(3), 193–213.

    Article  Google Scholar 

  • Conder, M., Marshall, S., & Slinko, A. (2007). Orders on multisets and discrete cones. Order, 24(4), 277–296.

    Article  Google Scholar 

  • Conder, M., & Slinko, A. (2004). A counterexample to Fishburn's conjecture on finite linear qualitative probability. Journal of Mathematical Psychology, 48, 425–431.

    Article  Google Scholar 

  • Danilov, V. I. (1987). Aggregation of dichotomic preferences. Mathematical Social Sciences, 13, 49–58.

    Article  Google Scholar 

  • Debreu, G. (1960). Topological methods in cardinal utility theory. In K.J. Arrow, S. Karlin, & P. Suppes (Eds.), Mathematical Methods in the Social Sciences(pp. 16–26). Stanford: Stanford University Press.

    Google Scholar 

  • Dershowitz, N. (1979). Proving termination with multiset orderings. Communications of the ACM, 22(8), 465–476.

    Article  Google Scholar 

  • Fine, T., & Gill, J., (1976). The enumeration of comparative probability relations. Annals of Probability, 4, 667–673.

    Article  Google Scholar 

  • Fine, T. L. (1973). Theories of probability: An examination of foundations. New York: Academic.

    Google Scholar 

  • de Finnetti, B. (1931). Sul significato soggetivo della probabilita`. Fundamenta Mathematicae, 17, 298–329.

    Google Scholar 

  • Fishburn, P. C. (1970). Utility theory for decision making. New York: Wlley.

    Google Scholar 

  • Fishburn, P. C. (1996). Finite linear qualitative probability. Journal of Mathematical Psychology, 40, 64–77.

    Article  Google Scholar 

  • Fishburn, P. C. (1997). Failure of cancellation conditions for additive linear orders. Journal of Combinatorial Designs, 5, 353–365.

    Article  Google Scholar 

  • Fishburn, P. C., Pekeč A., & Reeds, J. A. (2002). Subset comparisons for additive linear orders. Mathematics of Operations Research, 27, 227–243.

    Article  Google Scholar 

  • Fishburn, P. C. (1999). Preference structures and their numerical representations. Theoretical Computer Science, 217, 359–383.

    Article  Google Scholar 

  • Fishburn, P. C. (1997). Cancellation conditions for multiattribute preferences on finite sets. In M. H. Karwan, J. Spronk, & J. Wallenius (Eds.), Essays in decision making(pp. 157–167). Berlin: Springer.

    Google Scholar 

  • Fishburn, P. C. (2001). Cancellation conditions for finite two-dimensional additive measurement. Journal of Mathematical Psychology, 45, 2–26.

    Article  Google Scholar 

  • Fishburn, P. C., & Roberts, F. S. (1988). Unique finite conjoint measurement. Mathematical Social Sciences16, 107–143.

    Article  Google Scholar 

  • Fishburn, P.C., & Roberts, F. S. (1989). Axioms for unique subjective probability on finite sets. Journal of Mathematical Psychology, 33, 117–130.

    Article  Google Scholar 

  • Hardy, G. H., & Wright, E. M. (1960). An introduction to the theory of numbers.Oxford: Oxford University Press.

    Google Scholar 

  • Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement(Vol. 1). New York: Academic.

    Google Scholar 

  • Kraft, C. H., Pratt, J. W., & Seidenberg, A. (1959). Intuitive probability on finite sets. Annals of Mathematical Statistics, 30, 408–419.

    Article  Google Scholar 

  • Kumar, A. (1982). Lower probability on infinite spaces and instability of stationary sequences. PhD Thesis. Cornell University.

    Google Scholar 

  • Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1988). Foundations of measurement(Vol. 3). New York: Academic.

    Google Scholar 

  • Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement, Journal of Mathematical Psychology, 1, 1–27.

    Article  Google Scholar 

  • Maclagan D. (1999). Boolean term orders and the root system B n. Order, 15, 279–295.

    Article  Google Scholar 

  • Marshall, S. (2005). On the existence of extremal cones and comparative probability orderings. In Proceedings of the fourth international symposium on imprecise probabilities and their appli cations (ISIPTA 05)(pp. 246–255). Pittsburg, PA.

    Google Scholar 

  • Marshall, S. (2007). On the existence of extremal cones and comparative probability orderings. Journal of Mathematical Psychology, 51(5), 319–324.

    Article  Google Scholar 

  • Martin, U. (1989). A geometric approach to multiset ordering. Theoretical Computer Science, 67, 37–54.

    Article  Google Scholar 

  • Narens, L. (1985). Abstract measurement theory. Cambridge, MA: MIT.

    Google Scholar 

  • Pfanzagl, J. (1968). Theory of measurement. New York: New York.

    Google Scholar 

  • Roberts, F. S. (1979). Measurement theory with applications to decision making, utility, and the social sciences. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Scott, D. (1964). Measurement structures and inequalities, Journal of Mathematical Psychology, 1, 233–247.

    Article  Google Scholar 

  • Sertel, M., & Slinko, A. (2002). Ranking committees, words or multisets. Nota di Laboro 50.2002.Center of Operation Research and Economics. The Fundazione ENI Enrico Mattei, Milan.

    Google Scholar 

  • Sertel, M., & Slinko, A. (2007). Ranking committees, income streams or multisets. Economic Theory, 30(2), 265–287.

    Article  Google Scholar 

  • Stanley, R. P. (1997). Enumerative combinatorics(Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • Suppes, P., Krantz, D. H., Luce, R. D., & Tversky, A. (1988). Foundations of measurement(Vol. 2). New York: Academic.

    Google Scholar 

  • Simon, H. A. (1982). Models of bounded rationality(Vol. 1). In Economic analysis and public policy (pp. 235–441). Cambridge, MA : MIT.

    Google Scholar 

  • Wakker, P. P. (1989). Additive representation of preferences. Dordrecht: Kluwer.

    Google Scholar 

  • Wakker, P. P. (1991). Additive representations on rank-ordered sets. I. The algebraic approach. Journal of Mathematical Psychology, 35, 260–266.

    Article  Google Scholar 

  • Wakker, P. P. (1993). Additive representations on rank-ordered sets. II. The topological approach. Journal of Mathematical Economics, 22, 1–26.

    Article  Google Scholar 

  • Walley, P., & Fine, T. (1979). Varieties of modal (classificatory) and comparative probability. Syn-these, 41(3), 321–374.

    Google Scholar 

  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.

    Google Scholar 

  • Walley, P. (1999). Towards a unified theory of imprecise probability. In First international symposium on imprecise probabilities and their applications. Ghent, Belgium.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadii Slinko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slinko, A. (2009). Additive Representability of Finite Measurement Structures. In: Brams, S.J., Gehrlein, W.V., Roberts, F.S. (eds) The Mathematics of Preference, Choice and Order. Studies in Choice and Welfare. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79128-7_7

Download citation

Publish with us

Policies and ethics