Skip to main content

An Application of Stahl's Conjecture About the k-Tuple Chromatic Numbers of Kneser Graphs

  • Chapter
  • 1940 Accesses

Part of the book series: Studies in Choice and Welfare ((WELFARE))

Graph coloring is an old subject with many important applications. Variants of graph coloring are not only important in their various applications, but they have given rise to some very interesting mathematical challenges and open questions. Our purpose in this mostly expository paper is to draw attention to a conjecture of Saul Stahl's about one variant of graph coloring, k-tuple coloring. Stahl's Conjecture remains one of the long-standing, though not very widely known, conjectures in graph theory. We also apply a special case of the conjecture to answer two questions about k-tuple coloring due to N.V.R. Mahadev.

An interesting and important variant of ordinary graph coloring involves assigning a set of k colors to each vertex of a graph so that the sets of colors assigned to adjacent vertices are disjoint. Such an assignment is called a k-tuple coloring of the graph. k-tuple colorings were introduced by Gilbert (1972) in connection with the mobile radio frequency assignment problem (see Opsut & Roberts, 1981; Roberts, 1978, 1979; Roberts & Tesman, 2005). Other applications of multicolorings include fleet maintenance, task assignment, and traffic phasing. These are discussed in Opsut and Roberts (1981); Roberts (1979); Roberts and Tesman (2005) and elsewhere. Among the early publications on this topic are Chvátal, Garey, and Johnson (1978); Clarke and Jamison (1976); Garey and Johnson (1976); Scott (1975); Stahl (1976). Given a graph G and positive integer k, we seek the smallest number t so that there is a k-tuple coloring of G using colors from the set {1,2,...,t}. This t is called the k-th multichromatic number or k-tuple chromatic number of G and is denoted by ? k(G). Of course, if k = 1,? k(G) is just the ordinary chromatic number ?(G)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chvátal, V., Garey, M. R., & Johnson, D. S. (1978). Two results concerning multicoloring.Annals Discrete Mathematics,2, 151–154.

    Article  Google Scholar 

  • Clarke, F. H., & Jamison, R. E. (1976). Multicolorings, measures, and games on graphs.Discrete Mathematics,4, 241–246.

    Article  Google Scholar 

  • Erdös, P. (n.d.). Personal communication to Chvátal, Garey, and Johnson.

    Google Scholar 

  • Frankl, P., & Füredi, Z. (1986). Extremal problems concerning Kneser graphs.Journal of Combinatorial Theory, B40, 270–284.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1976). The complexity of near optimal graph coloring.Journal of the Association for Computing Machinery,23, 43–49.

    Google Scholar 

  • Gilbert, E. N. (1972). Unpublished technical memorandum. Murray Hill, NJ: Bell Telephone Labs.

    Google Scholar 

  • Grötzsch, H. (1958/1959). Ein dreifarbensatz für dreikresifreie netze auf der kugel.Wis-senschaftliche Zeitschrift der Martin Luther Universität Halle—Wittenburg, Math Naturwiss. Reihe,8, 109–120.

    Google Scholar 

  • Hell, P., & Roberts, F. S. (1982). Analogues of the Shannon capacity of a graph.Annals Discrete Mathematics,12, 155–168.

    Google Scholar 

  • Hilton, A. J. W., Rado, R., & Scott, S. H. (1975). Multicolouring graphs and hypergraphs.Nanta Mathematica,IX, 152–155.

    Google Scholar 

  • Johnson, A., Holroyd, F. C., & Stahl, S. (1997). Multichromatic numbers, star chromatic numbers and Kneser graphs.Journal of Graph Theory,26, 137–145.

    Article  Google Scholar 

  • Klostermeyer, W., & Zhang, C. Q. (2002).n-tuple coloring of planar graphs with large odd girth.Graphs and Combinatorics,18, 119–132.

    Article  Google Scholar 

  • Lovász, L. (1972). Minimax theorems for hypergraphs. In C. Berge, & D. Raychaudhuri (Eds.).Hypergraph Seminar, Lecture Notes in Mathematics(Vol. 411, pp. 111–126). Berlin: Springer.

    Chapter  Google Scholar 

  • Lovász, L. (1978). Kneser's conjecture, chromatic number and homotopy.Journal of Combinatorial Theory,A25, 319–324.

    Google Scholar 

  • Mahadev, N. V. R. (1990). Personal communication, November 9, 1990.

    Google Scholar 

  • Opsut, R. J., & Roberts, F. S. (1981). On the fleet maintenance, mobile radio frequency, task assig-ment, and traffic phasing problems. In G. Chartrand, et al. (Eds.)The theory and applications of graphs(pp. 479–492). New York: Wiley.

    Google Scholar 

  • Ostënyi, J. (2007). A lower bound on the multichromatic number of the Kneser graphs. Bolyai Institute, University of Szeged, 2007 (preprint).

    Google Scholar 

  • Roberts, F. S. (1978).Graph theory and its applications to problems of society. CBMS-NSF Monograph No. 29. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Roberts, F. S. (1979). On the mobile radio frequency assignment problem and the traffic light phasing problem.Annals of the New York Academy of Sciences,319, 466–483.

    Article  Google Scholar 

  • Roberts, F. S., & Tesman, B. (2005).Applied Combinatorics(2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall (reprint in press, Chapman & Hall/CRC).

    Google Scholar 

  • Scheinerman, E. R., & Ullman, D. H. (1997).Fractional graph theory: a rational approach to the theory of graphs. New York: Wiley.

    Google Scholar 

  • Scott, S. H. (1975).Multiple node colorings of finite graphs, Ph.D. Dissertation, University of Reading, England.

    Google Scholar 

  • Simonyi, G., & Tardos, G. (2004). Local chromatic number and the Borsuk-Ulam Theorem November 26, 2004.http://front.math.ucdavis.edu/math.CO/0407075

  • Stahl, S. (1976).n-Tuple colorings and associated graphs.Journal of Combinatorial Theory,B20, 185–203.

    Article  Google Scholar 

  • Stahl, S. (1998). The multichromatic numbers of some Kneser graphs.Discrete Mathematics,185, 287–291.

    Article  Google Scholar 

  • Tardif, C., & Zhu, X. (2002). The level of nonmultiplicativity of graphs.Discrete Mathematics,244, 461–471.

    Article  Google Scholar 

  • Vince, A. (1988). Star chromatic number.Journal of Graph Theory,12, 551–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred S. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poljak, S., Roberts, F.S. (2009). An Application of Stahl's Conjecture About the k-Tuple Chromatic Numbers of Kneser Graphs. In: Brams, S.J., Gehrlein, W.V., Roberts, F.S. (eds) The Mathematics of Preference, Choice and Order. Studies in Choice and Welfare. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79128-7_20

Download citation

Publish with us

Policies and ethics