Sensory Nerves pp 563-587 | Cite as

Role of Calcium in Regulating Primary Sensory Neuronal Excitability

  • T.D. Gover
  • T.H. Moreira
  • D. Weinreich
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 194)


The fundamental role of calcium ions (Ca2+) in an excitable tissue, the frog heart, was first demonstrated in a series of classical reports by Sydney Ringer in the latter part of the nineteenth century (1882a, b; 1893a, b). Even so, nearly a century elapsed before it was proven that Ca2+ regulated the excitability of primary sensory neurons. In this chapter we review the sites and mechanisms whereby internal and external Ca2+ can directly or indirectly alter the excitability of primary sensory neurons: excitability changes being manifested typically by variations in shape of the action potential or the pattern of its discharge.


Voltage-dependent calcium channels BK channels IK channels SK channels Calcium-dependent currents Extracellular calcium sensor Intracellular calcium stores Calcium ATPase Sodium/calcium exchanger Ryanodine receptor Inositol triphosphate receptor Spike frequency accommodation Spike broadening 



We would like to thank Jessica Swartz for her valuable input to this work and for her critique of an earlier version of this manuscript. This work was supported by NIH grants NS22069 (D.W.) and ST32-NS007375 (T.D.G.).


  1. Adelman JP, Shen KZ, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, Bond CT, North RA (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9(2):209–216PubMedCrossRefGoogle Scholar
  2. Atkinson NS, Robertson GA, Ganetzky B (1992) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555CrossRefGoogle Scholar
  3. Ayar A, Storer C, Tatham EL, Scott RH (1999) The effects of changing intracellular Ca2+ buffering on the excitability of cultured dorsal root ganglion neurones. Neurosci Lett 271(3): 171–174PubMedCrossRefGoogle Scholar
  4. Bader CR, Bertrand D, Schlichter R (1987) Calcium-activated chloride current in cultured sensory and parasympathetic quail neurones. J Physiol 394:125–148PubMedGoogle Scholar
  5. Baimbridge K, Celio M, Rogers J (1992) Calcium-binding proteins in the nervous system. Trends Neuroscience 15:303–308CrossRefGoogle Scholar
  6. Belmonte C, Gallego R (1983) Membrane properties of cat sensory neurones with chemoreceptor and baroreceptor endings. J Physiol 342:603–614PubMedGoogle Scholar
  7. Bird MM, Lieberman AR (1976) Microtubule fascicles in the stem processes of cultured sensory ganglion cells. Cell Tissue Res 169(1):41–47PubMedCrossRefGoogle Scholar
  8. Blackshaw S, Sawa A, Sharp AH, Ross CA, Snyder SH, Khan AA (2000) Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J 14(10):1375–1379PubMedCrossRefGoogle Scholar
  9. Boehmerle W, Splittgerber U, Lazarus MB, McKenzie KM, Johnston DG, Austin DJ, Ehrlich BE (2006) Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci USA 103(48):18356–18361PubMedCrossRefGoogle Scholar
  10. Bond CT, Herson PS, Strassmaier T, Hammond R, Stackman R, Maylie J, Adelman JP (2004) Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J Neurosci 24(23):5301–5306PubMedCrossRefGoogle Scholar
  11. Boulton AJ, Knight G, Drury J, Ward JD (1985) The prevalence of symptomatic, diabetic neuropathy in an insulin-treated population. Diabetes Care 8(2):125–128PubMedCrossRefGoogle Scholar
  12. Carafoli E (1991) The calcium pumping ATPase of the plasma membrane. Annu Rev Physiol 53:531–547PubMedCrossRefGoogle Scholar
  13. Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2005) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55(4): 579–581Google Scholar
  14. Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol 472:341–357PubMedGoogle Scholar
  15. Christian EP, Taylor GE, Weinreich D (1989) Serotonin increaes excitability of rabbit C-fiber neurons by two distinct mechanisms. J Applied Physiol 67:584–591Google Scholar
  16. Christian EP, Togo J, Naper KE (1994) Guinea pig visceral C-fiber neurons are diverse with respect to the K+ currents involved in action-potential repolarization. J Neurophysiol 71(2): 561–574PubMedGoogle Scholar
  17. Cohen AC, Moore KA, Bangalore R, Jafri MS, Weinreich D, Kao JPY (1997) Ca2+-induced Ca2+ release mediates Ca2+ transients evoked by single action potentials in rabbit vagal afferents. J Physiol 499:315–328PubMedGoogle Scholar
  18. Conigrave AD, Quinn SJ, Brown EM (2000) Cooperative multi-modal sensing and therapeutic implications of the extracellular Ca2+ sensing receptor. Trends Pharmacol Sci 10:401–407CrossRefGoogle Scholar
  19. Cordoba-Rodriguez R, Moore KA, Kao JP, Weinreich D (1999) Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons. Proc Natl Acad Sci USA 96(14):7650–7657PubMedCrossRefGoogle Scholar
  20. Crawford JH, Wootton JF, Seabrook GR, Scott RH (1997) Activation of Ca2+-dependent currents in dorsal root ganglion neurons by metabotropic glutamate receptors and cyclic ADP-ribose precursors. J Neurophysiol 77(5):2573–2584PubMedGoogle Scholar
  21. Currie KPM, Scott RH (1992) Calcium-activated currents in cultured neurones from rat dorsal root ganglia. Br J Pharmacol 106:593–602PubMedGoogle Scholar
  22. Dean WL, Chen D, Brandt PC, Vanaman TC (1997) Regulation of platelet plasma membrane Ca2+-ATPase by cAMP-dependent and tyrosine phosphorylation. J Biol Chem 272(24):15113–15119PubMedCrossRefGoogle Scholar
  23. Dent MA, Raisman G, Lai FA (1996) Expression of type 1 inositol 1,4,5-trisphosphate receptor during axogenesis and synaptic contact in the central and peripheral nervous system of developing rat. Development 122(3):1029–1039PubMedGoogle Scholar
  24. Deschenes M, Feltz P, Lamour Y (1976) A model for the estimate of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA induced depolarization in rat dorsal root ganglia. Brain Res 18:486–493CrossRefGoogle Scholar
  25. Devor M, Jänig W, Michaelis M (1994) Modulation of activity in dorsal root ganglion neurons by sympathetic activation in nerve-injured rats. J Neurophysiol 71(1):38–47PubMedGoogle Scholar
  26. Duchen MR (1990) Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. J Physiol 424:387–409PubMedGoogle Scholar
  27. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L et al (2000) Nomenclature of voltage gatedcalcium channels Neuron 25:533–535PubMedCrossRefGoogle Scholar
  28. Faber ES, Sah P (2003) Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J Physiol 552(2):483–497PubMedCrossRefGoogle Scholar
  29. Flatters SJ, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109(1-2):150–161PubMedCrossRefGoogle Scholar
  30. Fowler JC, Greene R, Weinreich D (1985) Two calcium-sensitive spike after-hyperpolarizations in visceral sensory neurones of the rabbit. J Physiol (Lond) 365:59–75Google Scholar
  31. Fox AJ, Barnes PJ, Venkatesan P, Belvisi MG (1997) Activation of large conductance potassium channels inhibits the afferent and efferent function of airway sensory nerves in the guinea pig. J Clin Invest 99:513–519PubMedCrossRefGoogle Scholar
  32. Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl channels – homing in on an elusive channel species. Prog Neurobiol 60(3):247–289PubMedCrossRefGoogle Scholar
  33. Fuchs A, Rigaud M, Sarantopoulos CD, Filip P, Hogan QH (2007) Contribution of calcium channel subtypes to the intracellular calcium signal in sensory neurons: the effect of injury. Anesthesiology 107(1):117–127PubMedCrossRefGoogle Scholar
  34. Gallagher JP, Higashi H, Nishi I (1978) Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurons. J Physiol 275:263–282PubMedGoogle Scholar
  35. Gallego R, Eyzaguirre C (1978) Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices. J Neurophysiol 41(5):1217–1232PubMedGoogle Scholar
  36. Gold MS, Shuster MJ, Levine JD (1996) Role of a Ca2+-dependent slow afterhyperpolarization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett 205(3):161–164PubMedCrossRefGoogle Scholar
  37. Gover TD, Moreira TH, Kao JP, Weinreich D (2007a) Calcium homeostasis in trigeminal ganglion cell bodies. Cell Calcium 41(4):389–396PubMedCrossRefGoogle Scholar
  38. Gover TD, Moreira TH, Kao JP, Weinreich D (2007b) Calcium regulation in individual peripheral sensory nerve terminals of the rat. J Physiol 578(Pt 2):481–490PubMedGoogle Scholar
  39. Gover TD, Kao JP, Weinreich D (2003). Calcium signaling in single peripheral sensory nerve terminals. J Neurosci 23;4793–4797PubMedGoogle Scholar
  40. Hablitz JJ, Heinemann U, Lux HD Step reductions in extracellular Ca2+ activate a transient inward current in chick dorsal root ganglion cells. Biophys J 50:753–757Google Scholar
  41. Hay M, Kunze DL (1994) An intermediate conductance calcium-activated potassium channel in rat visceral sensory afferent neurons. Neurosci Lett 167(1–2):179–182PubMedCrossRefGoogle Scholar
  42. Hartzell C, Putzier I, Arreola J (2005). Calcium-activated chloride channels. Ann Rev Physiol 67: 719–758CrossRefGoogle Scholar
  43. Hille B (2001) Ion channels of excitable membranes, 3d edn. Sinauer, Sunderland, MAGoogle Scholar
  44. Hoesch RE, Yienger K, Weinreich D, Kao JP (2002) Coexistence of functional IP(3) and ryanodine receptors in vagal sensory neurons and their activation by ATP. J Neurophysiol 88(3):1212–1219PubMedGoogle Scholar
  45. Honda CN (1995) Differential distribution of calbindin-D28K and parvalbumin in somatic and visceral sensory neurons. Neuro Science 68(3):883–892Google Scholar
  46. Hoesch RE, Weinreich D, Kao JP (2004) Localized IP3-evoked Ca2+ release activates a K+ current in primary vagal sensory neurons. J Neurophysiol 91(5):2344–2352PubMedCrossRefGoogle Scholar
  47. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656PubMedCrossRefGoogle Scholar
  48. Jafri MS, Moore KA, Taylor GE, Weinreich D (1997) Histamine H1 receptor activation blocks two classes of potassium current, IK(rest) and IAHP, to excite ferret vagal afferents. J Physiol 503.3:533–546CrossRefGoogle Scholar
  49. Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27(12):3305–3316PubMedCrossRefGoogle Scholar
  50. Kostyuk E, Pronchuk N, Shmigol A (1995) Calcium signal prolongation in sensory neurones of mice with experimental diabetes. Neuroreport 6(7):1010–1012PubMedCrossRefGoogle Scholar
  51. Kostyuk E, Svichar N, Shishkin V, Kostyuk P (1999) Role of mitochondrial dysfunction in calcium signalling alterations in dorsal root ganglion neurons of mice with experimentally-induced diabetes. Neuroscience 90(2):535–541PubMedCrossRefGoogle Scholar
  52. Kruglikov I, Gryshchenko O, Shutov L, Kostyuk E, Kostyuk P, Voitenko N (2004) Diabetes-induced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons. Pflugers Arch 448(4):395–401PubMedCrossRefGoogle Scholar
  53. Lancaster E, Oh EJ, Weinreich D (2001) Vagotomy decreases excitability in primary vagal afferent somata. J Neurophysiol 85:247–253PubMedGoogle Scholar
  54. Lancaster E, Oh EJ, Gover T, Weinreich D (2002) Calcium and calcium-activated currents in vagotomized rat primary vagal afferent neurons. J Physiol 540(Pt 2):543–556PubMedCrossRefGoogle Scholar
  55. Lee M-G, Kollarik M, Chaychoo B, Undem BJ (2004) Ionoteropic and metabotropic receptor mediated airway sensory nerve activation. Pulm Pharmacol Ther 17:355–360PubMedCrossRefGoogle Scholar
  56. Li W, Gao SB, Lv CX, Wu Y, Guo ZH, Ding JP, Xu T (2007) Characterization of voltage- and Ca2+-activated K+ channels in rat dorsal root ganglion neurons. J Cell Physiol 212(2): 348–357PubMedCrossRefGoogle Scholar
  57. Lokuta AJ, Komai H, McDowell TS, Valdivia HH (2002) Functional properties of ryanodine receptors from rat dorsal root ganglia. FEBS Lett 511(1–3):90–96PubMedCrossRefGoogle Scholar
  58. Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395(6705):900–905PubMedCrossRefGoogle Scholar
  59. Matsuda Y, Yoshida S, Yonezawa T (1976) A Ca-dependent regenerative response in rodent dorsal root ganglion cells cultured in vitro. Brain Res 115(2):334–338PubMedCrossRefGoogle Scholar
  60. Matsumoto M, Inoue M, Hald A, Xie W, Ueda H (2006) Inhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin. J Pharmacol Exp Ther 318(2):735–740PubMedCrossRefGoogle Scholar
  61. Mayer ML (1985) A calcium-activated chloride current generates the afterdepolarization of rat sensory neurones in culture. J Physiol 364:217–239PubMedGoogle Scholar
  62. McCallum JB, Kwok WM, Sapunar D, Fuchs A, Hogan QH (2006) Painful peripheral nerve injury decreases calcium current in axotomized sensory neurons. Anesthesiology 105(1):160–168PubMedCrossRefGoogle Scholar
  63. McGuirk SM, Dolphin AC (1992) G-protein mediation in nociceptive signal transduction: an investigation into the excitatory action of bradykinin in a subpopulation of cultured rat sensory neurons. Neuroscience 49(1):117–128PubMedCrossRefGoogle Scholar
  64. McPherson PS, Campbell KP (1993) The ryanodine receptor/Ca2+ release channel. J Biol Chem 268(19):13765–13768PubMedGoogle Scholar
  65. Mielke S, Sparreboom A, Mross K (2006) Peripheral neuropathy: a persisting challenge in paclitaxel-based regimes. Eur J Cancer 42(1):24–30PubMedCrossRefGoogle Scholar
  66. Mikoshiba K (2007) The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp 74:9–22PubMedCrossRefGoogle Scholar
  67. Mongan LC, Hill MJ, Chen MX, Tate SN, Collins SD, Buckby L, Grubb BD (2005) The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system. Neuroscience 131(1):161–175PubMedCrossRefGoogle Scholar
  68. Moore KA, Cohen AS, Kao JP, Weinreich D (1998) Ca2+-induced Ca2+ release mediates a slow post-spike hyperpolarization in rabbit vagal afferent neurons. J Neurophysiol 79(2):688–694PubMedGoogle Scholar
  69. Neylon CB, Nurgali K, Hunne B, Robbins HL, Moore S, Chen MX, Furness JB (2004) Intermediate-conductance calcium-activated potassium channels in enteric neurones of the mouse: pharmacological, molecular and immunochemical evidence for their role in mediating the slow afterhyperpolarization. J Neurochem 90(6):1414–1422PubMedCrossRefGoogle Scholar
  70. Nordin M, Nyström B, Wallin U, Hagbarth KE (1984) Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain 20(3): 231–245PubMedCrossRefGoogle Scholar
  71. Ogura H, Tachibana T, Yamanaka H, Kobayashi K, Obata K, Dai Y, Yoshiya S, Noguchi K (2007) Axotomy increases plasma membrane Ca2+ pump isoform4 in primary afferent neurons. Neuroreport 18(1):17–22PubMedCrossRefGoogle Scholar
  72. Oh EJ, Weinreich D (2004) Bradykinin decreases K+ and increases Cl conductances in vagal afferent neurones of the guinea pig. J Physiol 558(Pt 2):513–526PubMedCrossRefGoogle Scholar
  73. Ooashi N, Futatsugi A, Yoshihara F, Mikoshiba K, Kamiguchi H (2005) Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3. J Cell Biol 170(7):1159–1167PubMedCrossRefGoogle Scholar
  74. Philipson KD, Nicoll DA (2000) Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol 62:111–133PubMedCrossRefGoogle Scholar
  75. Polomano RC, Mannes AJ, Clark US, Bennett GJ (2001) A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94(3):293–304PubMedCrossRefGoogle Scholar
  76. Pottorf WJ, Thayer SA (2002) Transient rise in intracellular calcium produces a long-lasting increasein plasma membrane calcium pump activity in rat sensory neurons. J Neurochem 83(4):1002–1008PubMedCrossRefGoogle Scholar
  77. Ransom BR, Holz RW (1977) Ionic determinants of excitability in cultured mouse dorsal root ganglion and spinal cord cells. Brain Res 136(3):445–453PubMedCrossRefGoogle Scholar
  78. Ringer S,(1882a) Regarding the Action of Hydrate of Soda, Hydrate of Ammonia, and Hydrate of Postash on the Ventricle of the Frog's Heart. J Physiol 3:195–202PubMedGoogle Scholar
  79. Ringer S,(1882b) Concerning the Influence exerted by each of the Constituents of the Blood on the Contraction of the Ventricle. J Physiol 3:380–393PubMedGoogle Scholar
  80. Ringer S,(1883a) A further Contribution regarding the influence of the different Constituents of the Blood on the Contraction of the Heart. J Physiol 3:29–42Google Scholar
  81. Ringer S,(1883b) A third contribution regarding the Influence of the Inorganic Constituents of the Blood on the Ventricular Contraction. J Physiol 3:222–225Google Scholar
  82. Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66(5):345–353PubMedCrossRefGoogle Scholar
  83. Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7(12):921–931PubMedCrossRefGoogle Scholar
  84. Schlichter R, Bader CR, Bertrand D, Dubois-Dauphin M, Bernheim L (1989) Expression of substance P and of a Ca2+-activated C1 current in quail sensory trigeminal neurons. Neuroscience 30:585–594PubMedCrossRefGoogle Scholar
  85. Scott RH, McGuir SM, Dolphin AC (1988) Modulation of divalent cation-activated chloride ion currents. Br J Pharmacol 94:653–662PubMedGoogle Scholar
  86. Scott RH, Sutton KG, Griffin A, Stapleton SR, Currie KP (1995) Aspects of calcium-activated chloride currents: a neuronal perspective. Pharmacol Ther 66:535–565PubMedCrossRefGoogle Scholar
  87. Scroggs RS, Fox AP (1992) Multiple Ca2+ currents elicited by action potential waveforms in acutely isolated adult rat dorsal root ganglion neurons. J Neurosci 12(5):1789–1801PubMedGoogle Scholar
  88. Shah M, Haylett DG (2000) Ca2+ channels involved in the generation of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurons. J Neurophysiol 83(5):2554–2561PubMedGoogle Scholar
  89. Shishkin V, Potapenko E, Kostyuk E, Girnyk O, Voitenko N, Kostyuk P (2002) Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurons of rats. Cell Calcium 32:121–130PubMedCrossRefGoogle Scholar
  90. Shmigol A, Verkhratsky A, Isenberg G (1995) Calcium-induced calcium release in rat sensory neurons. J Physiol 489 (Pt 3):627–636PubMedGoogle Scholar
  91. Siau C, Xiao W, Bennett GJ (2006) Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 201(2):507–514PubMedCrossRefGoogle Scholar
  92. Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurones isolated from Na-K-2CL cotransporter null mice. J Neurosci 20:7531–7538Google Scholar
  93. Svichar N, Kostyuk P, Verkhratsky A (1997) Mitochondria buffer Ca2+ entry but not intracellular Ca2+ release in mouse DRG neurones. Neuroreport 8(18):3929–3932PubMedCrossRefGoogle Scholar
  94. Svichar N, Shishkin V, Kostyuk E, Voitenko N (1998) Changes in mitochondrial Ca2+ homeostasis in primary sensory neurons of diabetic mice. Neuroreport 9(6):1121–1125PubMedCrossRefGoogle Scholar
  95. Thayer SA, Miller RJ (1990) Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurons in vitro. J Physiol (Lond) 425:85–115Google Scholar
  96. Thayer SA, Perney TM, Miller RJ (1988) Regulation of calcium homeostasis in sensory neurons by bradykinin. J Neurosci 11:4089–4097Google Scholar
  97. Thayer SA, Usachev YM, Pottorf WJ (2002) Modulating Ca2+ clearance from neurons. Front Biosci 7:d1255–d1279PubMedCrossRefGoogle Scholar
  98. Undem BJ, Hubbard W, Weinreich D (1993) Immunologically-induced neuromodulation of guinea pig nodose ganglion neurons. J Auton Nerv Syst 44:35–44PubMedCrossRefGoogle Scholar
  99. Undem BJ, Oh EO, Lancaster E, Weinreich D (2002) Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves. J Neurophysiol 89:1196–1204CrossRefGoogle Scholar
  100. Undem BJ, Oh EJ, Lancaster E, Weinreich D (2003) Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves. J Neurophysiol 89:1196–1204Google Scholar
  101. Usachev YM, DeMarco SJ, Campbell C, Strehler EE, Thayer SA (2002) Bradykinin and ATP accelerates Ca2+ efflux from rat sensory neurons via protein kinase C and the plasma membrane Ca2+ pump isoform 4. Neuron 33:113–122PubMedCrossRefGoogle Scholar
  102. Usachev YM, Marsh AJ, Johanns TM, Lemke MM, Thayer SA (2006) Activation of protein kinase C in sensory neurons accelerates Ca2+ uptake into the endoplasmic reticulum. J Neurosci 26(1):311–318PubMedCrossRefGoogle Scholar
  103. Verdru P, De Greef C, Mertens L, Carmeliet E, Callewaert G (1997) Na+–Ca2+ exchange in rat dorsal root ganglion neurons. J Neurophysiol 77:484–490PubMedGoogle Scholar
  104. Vogalis F, Storm JF, Lancaster B (2003) SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur J Neurosci 18:3155–3166PubMedCrossRefGoogle Scholar
  105. Wächtler J, Mayer C, Grafe P (1998) Activity-dependent intracellular Ca2+ transients in unmyelinated nerve fibres of the isolated adult rat vagus nerve. Pflűgers Arch 435:678–686PubMedCrossRefGoogle Scholar
  106. Wang MS, Davis AA, Culver DG, Wang Q, Powers JC, Glass JD (2004) Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain 127(Pt 3):671–679PubMedGoogle Scholar
  107. Weinreich D, Wonderlin WF (1987) Inhibition of calcium-dependent spike after-hyperpolarization increases excitability of rabbit visceral sensory neurones. J Physiol 394:415–427PubMedGoogle Scholar
  108. Werth JL, Thayer SA (1994) Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 14:348–356PubMedGoogle Scholar
  109. Werth JL, Usachev YM, Thayer SA (1996) Modulation of calcium efflux from cultured rat dorsal root ganglion neurons. J Neurosci 16(3):1008–1015PubMedGoogle Scholar
  110. Wiernik PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, Paietta E (1987) Phase I clinical and pharmacokinetic study of taxol. Cancer Res 47(9):2486–2493PubMedGoogle Scholar
  111. Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32(5–6):279–305PubMedCrossRefGoogle Scholar
  112. Xiao W, Boroujerdi A, Bennett GJ, Luo ZD (2007) Chemotherapy-evoked painful peripheral neuropathy: analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience 144(2):714–720PubMedCrossRefGoogle Scholar
  113. Xu A, Hawkins C, Narayanan N (1993) Phosphorylation and activation of the Ca2+-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. J Biol Chem 268(12):8394–8397Google Scholar
  114. Yusaf SP, Goodman J, Gonzalez IM, Bramwell S, Pinnock RD, Dixon AK, Lee K (2001) Streptozocin-induced neuropathy is associated with altered expression of voltage-gated calcium channel subunit mRNAs in rat dorsal root ganglion neurones. Biochem Biophys Res Commun 289(2):402–406PubMedCrossRefGoogle Scholar
  115. Zhang XF, Gopalakrishnan M, Shieh CC (2003) Modulation of action potential firing by iberiotoxin and NS1619 in rat dorsal root ganglion neurons. Neuroscience 122, 1003–1011PubMedCrossRefGoogle Scholar
  116. Zylinska L, Guerini D, Gromadzinska E, Lachowicz L (1998) Protein kinases A and C phosphorylate purified Ca2+-ATPase from rat cortex, cerebellum and hippocampus. Biochim Biophys Acta 1448(1):99–108PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T.D. Gover
    • 1
  • T.H. Moreira
    • 1
  • D. Weinreich
    • 1
  1. 1.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations