Skip to main content

Nandrolone: A Multi-Faceted Doping Agent

  • Chapter
  • First Online:
Doping in Sports: Biochemical Principles, Effects and Analysis

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 195))

Abstract

Nandrolone or nortestosterone, an anabolic-androgenic steroid, has been prohibited by doping control regulations for more than 30 years. Although its main metabolism in the human body was already known at that time, and detection of its misuse by gas or liquid chromatographic separation with mass spectrometric detection is straightforward, many interesting aspects regarding this doping agent have appeared since.

Over the years, nandrolone preparations have kept their position among the prohibited substances that are most frequently detected in WADA-accredited laboratories. Their forms of application range from injectable fatty acid esters to orally administered nandrolone prohormones. The long detection window for nandrolone ester preparations and the appearance of orally available nandrolone precursors have changed the pattern of misuse.

At the same time, more refined analytical methods with lowered detection limits led to new insights into the pharmacology of nandrolone and revelation of its natural production in the body.

Possible contamination of nutritional supplements with nandrolone precursors, interference of nandrolone metabolism by other drugs and rarely occurring critical changes during storage of urine samples have to be taken into consideration when interpreting an analytical finding.

A set of strict identification criteria, including a threshold limit, is applied to judge correctly an analytical finding of nandrolone metabolites. The possible influence of interfering drugs, urine storage or natural production is taken into account by applying appropriate rules and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Australian Sports Anti-Doping Authority (2008) Supplements, http://www.asada.gov.au/resources/factsheets/asada_factsheet_sm_supplements_0804.pdf. Cited 12 Dec 2008

  • Avois L, Mangin P, Saugy M (2007) Concentrations of nandrolone metabolites in urine after the therapeutic administration of an ophthalmic solution. J Pharmaceut Biomed Anal 44:173–179

    Google Scholar 

  • Ayotte C (2006) Significance of 19-norandrosterone in athletes’ urine samples. Br J Sports Med 40(Suppl 1):i25–i29

    PubMed  Google Scholar 

  • Ayotte C, Levesque JF, Cle roux M et al (2001) Sport nutritional supplements: quality and doping controls. Can J Appl Physiol 26(Suppl):S120–S129

    Google Scholar 

  • Ayotte C, Romiguière C, Fakirian A et al (2006) The usefulness of GC/C/IRMS in determining the origin of low levels 19-NA – application in routine analysis. In: Schänzer W, Geyer H, Gotzmann A et al (eds) Recent advances in doping analysis (14). Sportverlag Strauß, Köln, pp 277–287

    Google Scholar 

  • Bagchus WM, Smeets JM, Verheul HA et al (2005) Pharmacokinetic evaluation of three different intramuscular doses of nandrolone decanoate: analysis of serum and urine samples in healthy men. J Clin Endocrinol Metab 90:2624–2630

    PubMed  Google Scholar 

  • Baume N, Avois L, Schweizer C et al (2004) [13C]Nandrolone excretion in trained athletes: interindividual variability in metabolism. Clin Chem 50:355–364

    PubMed  Google Scholar 

  • Behre HM, Kliesch S, Lemcke B et al (2001) Suppression of spermatogenesis to azoospermia by combined administration of GnRH antagonist and 19-nortestosterone cannot be maintained by this non-aromatizable androgen alone. Hum Reprod 16:2570–2577

    PubMed  Google Scholar 

  • Bergink EW, Janssen PS, Turpijn EW et al (1985) Comparison of the receptor binding properties of nandrolone and testosterone under in vitro and in vivo conditions. J Steroid Biochem 22:831–836

    PubMed  Google Scholar 

  • Birch JA (1950) Hydroaromatic steroid hormones. I: 10-Nortestosterone. J Chem Soc DOI:10.1039/JR9500000367:367–368

    Google Scholar 

  • Bjorkhem I, Ek H (1982) Detection and quantitation of 19-norandrosterone in urine by isotope dilution-mass spectrometry. J Steroid Biochem 17:447–451

    PubMed  Google Scholar 

  • Bodybuilding.com (2009), http://www.bodybuilding.com/store/nor.html. Cited 12 November 2008

  • Bricout V, Wright F (2004) Update on nandrolone and norsteroids: how endogenous or xenobiotic are these substances? Eur J Appl Physiol 92:1–12

    PubMed  Google Scholar 

  • Brooks RV, Jeremiah G, Webb WA et al (1979) Detection of anabolic steroid administration to athletes. J Steroid Biochem 11:913–917

    PubMed  Google Scholar 

  • Brueggemeier RW, Hackett JC, Diaz-Cruz ES (2005) Aromatase inhibitors in the treatment of breast cancer. Endocr Rev 26:331–345

    PubMed  Google Scholar 

  • Burke L, Desbrow B, Minehan M (2000) Dietary supplements and nutritional ergogenic aids. In: Burke L, Deakin V (eds) Clinical sports nutrition. McGraw-Hill, Sydney, pp 455–528

    Google Scholar 

  • Callicott R, Kicman AT (2003) Nandrolone progress report to the UK Sports Council from the Expert Committee on nandrolone. Int J Sports Med 20

    Google Scholar 

  • Casson G, Navaneethanan M, Points J (2006) Is 17α-19-nortestosterone endogenous in male sheep urine? Fifth international symposium on hormone and veterinary drug residue analysis, Antwerp, Belgium

    Google Scholar 

  • Catlin DH, Leder BZ, Ahrens B et al (2000) Trace contamination of over-the-counter androstenedione and positive urine test results for a nandrolone metabolite. JAMA 284:2618–2621

    PubMed  Google Scholar 

  • Celotti F, Cesi PN (1992) Anabolic-steroids: a review of their effects on the muscles, of their possible echanisms of action and of their use in athletics. J Steroid Biochem Mol Biol 43:469–477

    PubMed  Google Scholar 

  • Clausnitzer C, Große J (1988) Interference of birth control pills with dope analysis: a contribution to the problem with norethisterone. In: Park J (ed) The international symposium on drug abuse in sports. Korea Institute of Science and Technology, Seoul, pp 95–102

    Google Scholar 

  • Counsell RE (1961) Isomeric estrane derivatives. Tetrahedron 15:202–211

    Google Scholar 

  • de Boer D, de Jong E, Maes RA et al (1988) The problems of oral contraceptives in dope control of anabolic steroids. Biomed Environ Mass Spectrom 17:127–128

    PubMed  Google Scholar 

  • de Boer D, Bensink SN, Borggreve AR et al (1993) Profiling 19-norsteroids. III. GC/MS/MS analysis of 19-norsteroids during pregnancy. In: Donike M, Geyer H, Gotzmann A et al (eds) 10th Cologne workshop on dope analysis. Sport und Buch Strauß, Köln, pp 121–122

    Google Scholar 

  • De Cock KJ, Delbeke FT, Van Eenoo P et al (2001) Detection and determination of anabolic steroids in nutritional supplements. J Pharmaceut Biomed Anal 25:843–852

    Google Scholar 

  • de Geus B, Delbeke F, Meeusen R et al (2004) Norandrosterone and noretiocholanolone concentration before and after submaximal standardized exercise. Int J Sports Med 25:528–532

    PubMed  Google Scholar 

  • de Hon O, Coumans B (2007) The continuing story of nutritional supplements and doping infractions. Br J Sports Med 41:800–805; discussion 805

    Google Scholar 

  • De Wasch K, Le Bizec B, De Brabander H et al (2001) Consequence of boar edible tissue consumption on urinary profiles of nandrolone metabolites. II. Identification and quantification of 19 norsteroids responsible for 19 norandrosterone and 19 noretiocholanolone excretion in human urine. Rapid Commun Mass Spectrom 15:1442–1447

    PubMed  Google Scholar 

  • Debruyckere G, Van Peteghem C (1991) Detection of 19-nortestosterone and its urinary metabolites in miniature pigs by gas chromatography-mass spectrometry. J Chromatogr 564:393–403

    PubMed  Google Scholar 

  • Debruyckere G, Van Peteghem C, De Brabander HF et al (1990) Gas chromatographic-mass spectrometric confirmation of 19-nortestosterone in the urine of untreated boars–effect of the administration of Laurabolin. Vet Q 12:246–250

    PubMed  Google Scholar 

  • Debruyckere G, Van Peteghem CH, de Sagher R (1993) Influence of the consumption of meat contaminated with anabolic steroids on doping tests. Anal Chim Acta 275:49–56

    Google Scholar 

  • Dehennin L, Silberzahn P, Reiffsteck A et al (1984) Presence de 19-norandrostendione et de 19-nortestosterone dans les fluides folliculaires humain et equin. Pathol Biol 32:828–829

    Google Scholar 

  • Dehennin L, Jondet M, Schöller R (1987) Androgen and 19-norsteroid profiles in human preovulatory follicles from stimulated cycles: an isotop dilution-mass spectrometric study. J Steroid Biochem 26:399–405

    PubMed  Google Scholar 

  • Dehennin L, Bonnaire Y, Plou P (1999) Urinary excretion of 19-norandrosterone of endogenous origin in man: quantitative analysis by gas chromatography-mass spectrometry. J Chromatogr B 721:301–307

    Google Scholar 

  • Diel P, Friedel A, Geyer H et al (2008) The prohormone 19-norandrostenedione displays selective androgen receptor modulator (SARM) like properties after subcutaneous administration. Toxicol Lett 177:198–204

    PubMed  Google Scholar 

  • Dugal R, Dupuis C, Bertrand MJ (1977) Radioimmunoassay of anabolic steroids: an evaluation of three antisera for the detection of anabolic steroids in biological fluids. Br J Sports Med 11:162–169

    PubMed  Google Scholar 

  • Dintinger T, Gaillard J-L, Moslemi S et al (1989a) Androgen and 19-norandrogen aromatization by equine and human placental microsomes. J Steroid Biochem 33:949–954

    PubMed  Google Scholar 

  • Dintinger T, Gaillard J-L, Zwain I et al (1989b) Synthesis and aromatization of 19-norandrogens in Stallion tests. J Steroid Biochem 32:537–544

    PubMed  Google Scholar 

  • Engel LL, Alexander L, Wheeler M (1958) Urinary metabolites of administered 19-nortestosterone. J Biol Chem 231:159–165

    PubMed  Google Scholar 

  • Gambelunghe C, Sommavilla M, Rossi R (2002) Testing for nandrolone metabolites in urine samples of professional athletes and sedentary subjects by GC/MS/MS analysis. Biomed Chromatogr 16:508–512

    PubMed  Google Scholar 

  • Gambelunghe C, Sommavilla M, Ferranti C et al (2007) Analysis of anabolic steroids in hair by GC/MS/MS. Biomed Chromatogr 21:369–375

    PubMed  Google Scholar 

  • Gardner FH (1985) Anabolic steroids in aplastic anemia. Acta Endocrinol Suppl 271:87–96

    Google Scholar 

  • Geusens P (1995) Nandrolone decanoate: pharmacological properties and therapeutic use in osteoporosis. Clin Rheumatol 14(Suppl 3):32–39

    PubMed  Google Scholar 

  • Geyer H, Mareck-Engelke U, Reinhart U et al (2000) Positive doping cases with norandrosterone after application of contaminated nutritional supplements. Dtsch Z Sportmed 51:378–382

    Google Scholar 

  • Geyer H, Parr MK, Mareck U et al (2004) Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids – results of an international study. Int J Sports Med 25:124–129

    PubMed  Google Scholar 

  • Grosse J, Anielski P, Hemmersbach P et al (2005) Formation of 19-norsteroids by in situ demethylation of endogenous steroids in stored urine samples. Steroids 70:499–506

    PubMed  Google Scholar 

  • Hebestreit M, Flenker U, Fussholler G et al (2006) Determination of the origin of urinary norandrosterone traces by gas chromatography combustion isotope ratio mass spectrometry. Analyst 131:1021–1026

    PubMed  Google Scholar 

  • Hemmersbach P, Hågensen Jetne AH, Lund HS (2006) Determination of urinary norandrosterone excretion in females during one menstrual cycle by gas chromatography/mass spectrometry. Biomed Chromatogr 20:710–717

    PubMed  Google Scholar 

  • Hintikka L, Kuuranne T, Leinonen A et al (2008a) Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and interlaboratory comparison. J Mass Spectrom 43:965–973

    PubMed  Google Scholar 

  • Hintikka L, Kuuranne T, Aitio O et al (2008b) Enzyme-assisted synthesis and structure characterization of glucuronide conjugates of eleven anabolic steroid metabolites. Steroids 73:257–265

    PubMed  Google Scholar 

  • Hoffmann R (2003) Steroidogenic isoenzymes in human hair and their potential role in androgenetic alopecia. Dermatology 206:85–95

    PubMed  Google Scholar 

  • Khalil MW, Morley P, Glasier MA et al (1989) Formation of 4-oestrene-3, 17-dione (19-norandrostenedione) by porcine granulosa cells in vitro is inhibited by the aromatase inhibitor 4-hydroxyandrostenedione and the cytochrome P-450 inhibitors aminoglutethimide phosphate and ketoconazole. J Endocrinol 120:251–260

    PubMed  Google Scholar 

  • Kicman AT, Gower DB (2003) Anabolic steroids in sport: biochemical, clinical and analytical perspectives [erratum appears in Ann Clin Biochem 2003 Nov; 40(6):704]. Ann Clin Biochem 40:321–356

    PubMed  Google Scholar 

  • Kintz P, Cirimele V, Sachs H et al (1999a) Testing for anabolic steroids in hair from two bodybuilders. Forensic Sci Int 101:209–216

    PubMed  Google Scholar 

  • Kintz P, Cirimele V, Ludes B (1999) Norandrosterone et Noretiocholanolone: Les Métabolites Révélateurs. Acta Clin Belg Suppl:68–73

    Google Scholar 

  • Kohler RM, Lambert MI (2002) Urine nandrolone metabolites: false positive doping test? Br J Sports Med 36:325–329

    PubMed  Google Scholar 

  • Kuhl H, Wiegratz I (2007) Can 19-nortestosterone derivatives be aromatized in the liver of adult humans? Are there clinical implications? Climacteric 10:344–353

    PubMed  Google Scholar 

  • Kupfer D, Forchielli E, Dorfmann RI (1960) 3α-Hydroxy-19-nor-5α-androstan-17-on and 19-nor-5α-androstane-3α, 17β-diol. J Org Chem 25:1674–1675

    Google Scholar 

  • Kuuranne T (2009) Phase-II-metabolism of androgens and its relevancy for doping control analysis. In: Thieme D, Hemmersbach P (eds) Doping in Sports, Handbook of Experimental Pharmacology 195, Springer, Heidelberg Berlin

    Google Scholar 

  • Le Bizec B, Monteau F, Gaudin I et al (1999) Evidence for the presence of endogenous 19-norandrosterone in human urine. J Chromatog B 723:157–172

    Google Scholar 

  • Le Bizec B, Gaudin I, Monteau F et al (2000) Consequence of boar edible tissue consumption on urinary profiles of nandrolone metabolites. I. Mass spectrometric detection and quantification of 19-norandrosterone and 19-noretiocholanolone in human urine. Rapid Commun Mass Spectrom 14:1058–1065

    PubMed  Google Scholar 

  • Le Bizec B, Bryand F, Gaudin I et al (2002a) Endogenous nandrolone metabolites in human urine. Two-year monitoring of male professional soccer players. J Anal Toxicol 26:43–47

    Google Scholar 

  • Le Bizec B, Bryand F, Gaudin I et al (2002b) Endogenous nandrolone metabolites in human urine: preliminary results to discriminate between endogenous and exogenous origin. Steroids 67:105–110

    PubMed  Google Scholar 

  • Llewellyn W (2009) Anabolics, 9 ed. Molecular Nutrition LLC, Jupiter, USA

    Google Scholar 

  • Lund HS, Jåthun S, Fedorcsak P et al (2002) Synthesis of nandrolone in the human ovary. In: Schänzer W, Geyer H, Gotzmann A et al (eds) Recent advances in doping analysis (10). Sport & Buch Strauß, Köln, pp 23–34

    Google Scholar 

  • Lund HS, Larsen IM, Hemmersbach P et al (2004) Inter-laboratory study of low levels of nandrolone metabolites. In: Schänzer W, Geyer H, Gotzmann A et al (eds) Recent advances in doping analysis (12) – Proceedings of the Manfred Donike workshop – 22nd cologne workshop on dope analysis. Sport und Buch Strauß, Köln, pp 485–489

    Google Scholar 

  • Mareck-Engelke U, Schultze G, Geyer H et al (2000) 19-Norandrosterone in pregnant women. In: Schänzer W, Geyer H, Gotzmann A et al (eds) Recent advances in doping analysis (8). Sport & Buch Strauß, Köln, pp 145–154

    Google Scholar 

  • Mareck-Engelke U, Schultze G, Geyer H et al (2002) The appearance of urinary 19-norandrosterone during pregnancy. Eur J Sport Sci 2:1–7

    Google Scholar 

  • Masse R, Laliberte C, Tremblay L et al (1985) Gas chromatographic/mass spectrometric analysis of 19-nortestosterone urinary metabolites in man. Biomed Mass Spectrom 12:115–121

    PubMed  Google Scholar 

  • Mathurin JC, Herrou V, Bourgogne E (2001) Gas chromatography-combustion-isotope ratio mass spectrometry analysis of 19-norsteroids: application to the detection of a nandrolone metabolite in urine. J Chromatog B 759:267–275

    Google Scholar 

  • Maughan RJ (2005) Contamination of dietary supplements and positive drug tests in sport. Journal of Sports Sciences 23:883–889

    PubMed  Google Scholar 

  • Millman RB, Ross EJ (2003) Steroid and nutritional supplement use in professional athletes. Am J Addict 12(Suppl 2):S48–S54

    PubMed  Google Scholar 

  • Mooradian AD, Morley JE, Korenman SG (1987) Biological actions of androgens. Endocr Rev 8:1–28

    PubMed  Google Scholar 

  • Mulligan K, Zackin R, Clark RA et al (2005) Effect of nandrolone decanoate therapy on weight and lean body mass in HIV-infected women with weight loss: a randomized, double-blind, placebo-controlled, multicenter trial. Arch Int Med 165:578–585

    Google Scholar 

  • Nieschlag E, Zitzmann M, Kamischke A (2003) Use of progestins in male contraception. Steroids 68:965–972

    PubMed  Google Scholar 

  • Olympiatoppen Norway (2004) Olympiatoppens risikovurdering av kosttilskudd, http://www.olympiatoppen.no/fagstoff/ernaring/kosttilskudd/media185.media. Cited 11 July 2009

  • Parr MK, Geyer H, Reinhart U et al (2004) Analytical strategies for the detection of non-labelled anabolic androgenic steroids in nutritional supplements. Food Addit Contam 21:632–640

    PubMed  Google Scholar 

  • Puccio M, Nathanson L (1997) The cancer cachexia syndrome. Semin Oncol 24:277–287

    PubMed  Google Scholar 

  • Rajalakshmi M (2005) Male contraception: expanding reproductive choice. Indian J Exp Biol 43:1032–1041

    PubMed  Google Scholar 

  • Reznik Y, Herrou M, Dehennin L et al (1987) Rising plasma levels of 19-nortestosterone throughout pregnancy: determination by radioimmunoassay and validation by gas chromatography-mass spectrometry. J Clin Endocrinol Metab 64:1086–1089

    PubMed  Google Scholar 

  • Reznik Y, Dehennin L, Coffin C et al (2001) Urinary nandrolone metabolites of endogenous origin in man: A confirmation by output regulation under human chorionic gonadotropin stimulation. J Clin Endocrinol Metab 86:146–150

    PubMed  Google Scholar 

  • Robinson N, Taroni F, Saugy M et al (2001) Detection of nandrolone metabolites in urine after a football game in professional and amateur players: a Bayesian comparison. Forensic Sci Int 122:130–135

    PubMed  Google Scholar 

  • Sattler FR, Schroeder ET, Dube MP et al (2002) Metabolic effects of nandrolone decanoate and resistance training in men with HIV. Am J Physiol Endocrinol Metab 283:E1214–E1222

    PubMed  Google Scholar 

  • Schänzer W (1996) Metabolism of anabolic androgenic steroids. Clin Chem 42:1001–1020

    PubMed  Google Scholar 

  • Schänzer W, Donike M (1993) Metabolism of anabolic steroids in man: synthesis and use of reference substances for identification of anabolic steroid metabolites. Anal Chim Acta 275:23–48

    Google Scholar 

  • Schindler AE, Campagnoli C, Druckmann R et al (2003) Classification and pharmacology of progestins. Maturitas 46(Suppl 1):S7–S16

    PubMed  Google Scholar 

  • Schmitt N, Flament MM, Goubault C et al (2002) Nandrolone excretion is not increased by exhaustive exercise in trained athletes. Med Sci Sports Exer 34:1436–1439

    Google Scholar 

  • Schrader Y, Thevis M, Schanzer W (2006) Quantitative determination of metabolic products of 19-norandrostenediol in human plasma using gas chromatography/mass spectrometry. Drug Metab Disposition 34:1328–1335

    Google Scholar 

  • Schürmeyer T, Knuth UA, Belkien L et al (1984) Reversible azoospermia induced by the anabolic steroid 19-nortestosterone. Lancet 323:417–420

    Google Scholar 

  • Segura J, Pichini S, Peng SH et al (2000) Hair analysis and detectability of single dose administration of androgenic steroid esters. Forensic Sci Int 107:347–359

    PubMed  Google Scholar 

  • Shackleton CHL, Roitman E, Phillips A et al (1997a) Androstanediol and 5-androstenediol profiling for detectinh exogenously administered dihydrotestosterone, epitestosterone, and dehydroepiandrosterone: Potential use in gas chromatography isotope ratio mass spectrometry. Steroids 62:665–673

    PubMed  Google Scholar 

  • Shackleton CHL, Phillips A, Chang T et al (1997b) Confirming testosterone administration by isotope ratio mass spectrometric analysis of urinary androstanediols. Steroids 62:379–387

    PubMed  Google Scholar 

  • Simpson ER (2002) Aromatization of androgens in women: current concepts and findings. Fertil Steril 77(Suppl 4):S6–S10

    PubMed  Google Scholar 

  • Sinner D, Bachmann M (2004) Anabole Steroide: Das schwarze Buch. BMS Verlag, Gronau

    Google Scholar 

  • Stepan R, Cuhra P, Barsova S (2008) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection for the determination of anabolic steroids and related compounds in nutritional supplements. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 25:557–565

    Google Scholar 

  • Storer TW, Woodhouse LJ, Sattler F et al (2005) A randomized, placebo-controlled trial of nandrolone decanoate in human immunodeficiency virus-infected men with mild to moderate weight loss with recombinant human growth hormone as active reference treatment. J Clin Endocrinol Metab 90:4474–4482

    PubMed  Google Scholar 

  • Strahm E, Saudan C, Sottas PE et al (2007) Direct detection and quantification of 19-norandrosterone sulfate in human urine by liquid chromatography-linear ion trap mass spectrometry. J Chromatogr B 852:491–496

    Google Scholar 

  • Strahm E, Baume N, Mangin P et al (2009) Profiling of 19-norandrosterone sulfate and glucuronide in human urine: implications in athlete’s drug testing. Steroids 74:359–364

    PubMed  Google Scholar 

  • Tarter TH, Vaughan ED Jr (2006) Inhibitors of 5alpha-reductase in the treatment of benign prostatic hyperplasia. Curr Pharmaceut Design 12:775–783

    Google Scholar 

  • The Senate of the United States (2004) Anabolic steroid control act of 2004, http://www.theorator.com/bills108/s2195.html. Cited 11 November 2008

  • Thevis M, Opfermann G, Schmickler H et al (2001a) Mass spectrometry of steroid glucuronide conjugates. I. Electron impact fragmentation of 5alpha-/5beta-androstan-3alpha-ol-17-one glucuronides, 5alpha-estran-3alpha-ol-17-one glucuronide and deuterium-labelled analogues. J Mass Spectrom 36:159–168

    PubMed  Google Scholar 

  • Thevis M, Opfermann G, Schmickler H et al (2001b) Mass spectrometry of steroid glucuronide conjugates. II-Electron impact fragmentation of 3-keto-4-en- and 3-keto-5alpha-steroid-17-O-beta glucuronides and 5alpha-steroid-3alpha, 17beta-diol 3- and 17-glucuronides. J Mass Spectrom 36:998–1012

    PubMed  Google Scholar 

  • Thevis M, Geyer H, Mareck U et al (2007) Doping-control analysis of the 5alpha-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolite. Ther Drug Monit 29:236–247

    PubMed  Google Scholar 

  • Thieme D, Anielski P, Grosse J et al (2003) Identification of anabolic steroids in serum, urine, sweat and hair. Comparison of metabolic patterns. Anal Chim Acta 483:299–306

    Google Scholar 

  • Torrado S, Segura J, Farre M et al (2008a) Gas chromatography-mass spectrometry method for the analysis of 19-nor-4-androstenediol and metabolites in human plasma: application to pharmacokinetic studies after oral administration of a prohormone supplement. Steroids 73:751–759

    PubMed  Google Scholar 

  • Torrado S, Roig M, Farre M et al (2008b) Urinary metabolic profile of 19-norsteroids in humans: glucuronide and sulphate conjugates after oral administration of 19-nor-4-androstenediol. Rapid Commun Mass Spectrom 22:3035–3042

    PubMed  Google Scholar 

  • Tseng YL, Kuo F-H, Sun K-H (2005) Quantification and profiling of 19-norandrosterone and 19-noretiocholanolone in human urine after consumption of a nutritional supplement and norsteroids. J Anal Toxicol 29:124–134

    PubMed  Google Scholar 

  • U.S. Food and Drug Administration (1994) Dietary Supplement and Health Education Act, http://www.fda.gov/opacom/laws/dshea.html. Cited 11 November 2008

  • United States Anti-Doping Agency (2003) Athlete Advisory – “Approved” or “Verified” Supplements, http://www.usada.org/files/active/athletes/Athlete%20Advisory-approved%20or%20verified%20supplements.pdf. Cited 12 Dec 2008

  • Uralets VP, Gillette PA (1999) Over-the-counter anabolic steroids 4-androsten-3, 17-dione; 4-androsten-3beta, 17beta-diol; and 19-nor-4-androsten-3, 17-dione: excretion studies in men. J Anal Toxicol 23:357–366

    PubMed  Google Scholar 

  • Van Eenoo P (1998) Urinary metabolites of endogenous nandrolone in women. A case study. In: Schänzer W, Geyer H, Gotzmann A et al (eds) Recent advances in doping analysis (6). Sport und Buch Strauß, Köln, pp 145–154

    Google Scholar 

  • Van Eenoo P, Delbeke FT, de Jong FH et al (2001) Endogenous origin of norandrosterone in female urine: indirect evidence for the production of 19-norsteroids as by-products in the conversion from androgen to estrogen. J Steroid Biochem Mol Biol 78:351–357

    PubMed  Google Scholar 

  • van Gammeren D, Falk D, Antonio J (2002) Effects of norandrostenedione and norandrostenediol in resistance-trained men. Nutrition 18:734–737

    PubMed  Google Scholar 

  • van Ginkel LA, Stephany RW, Zoontjes PW et al (1989) Het voorkomen van nortestosteron in eetbare delen van niet gecastreerde mannelijke varkens. Tijdschr Diergeneeskd (Nederland) 114:311–314

    Google Scholar 

  • Vanoosthuyze K, Daeseleire E, Van Overbeke A et al (1994) Survey of the hormones used in cattle fattening based on the analysis of Belgian injection sites. Analyst 119:2655–2658

    PubMed  Google Scholar 

  • Walker CJ, Cowan DA, James VH et al (2009a) Doping in sport-1. Excretion of 19-norandrosterone by healthy women, including those using contraceptives containing norethisterone. Steroids 74:329–334

    PubMed  Google Scholar 

  • Walker CJ, Cowan DA, James VH et al (2009b) Doping in sport‐3. Metabolic conversion of oral norethisterone to urinary 19-norandrosterone. Steroids 74:341–349

    PubMed  Google Scholar 

  • Walker CJ, Cowan DA, James VH et al (2009c) Doping in sport‐2. Quantification of the impurity 19-norandrostenedione in pharmaceutical preparations of norethisterone. Steroids 74:335–340

    PubMed  Google Scholar 

  • Wilds AL, Nelson NA (1953) The facile synthesis of 19-nortestosterone and 19-norandrostenedione from estrone. J Am Chem Soc 75:5366–5369

    Google Scholar 

  • World Anti Doping Agency (2003) Identification criteria for qualitative assays incorporating chromatography and mass spectrometry, http://www.wada-ama.org/rtecontent/document/criteria_1_2.pdf. Cited 11 November 2008

  • World Anti Doping Agency (2005) 2004 Adverse analytical findings reported by accredited laboratories, http://www.wada-ama.org/rtecontent/document/LABSTATS_2004.pdf. Cited 7 November 2008

  • World Anti Doping Agency (2008a) 2007 Adverse analytical findings reported by accredited laboratories, http://www.wada-ama.org/rtecontent/document/LABSTATS_2007.PDF. Cited 07 November 2008

  • World Anti Doping Agency (2008b) The 2009 Prohibited List, http://www.wada-ama.org/rtecontent/document/2009_Prohibited_List_ENG_Final_20_Sept_08.pdf. Cited 5.11.2008

  • World Anti Doping Agency (2009) Harmonization of Analysis and Reporting of 19-Norsteroids Related to Nandrolone, WADA Technical Document – TD2009NA, http://wada-ama.org/rtecontent/document/TD2009NA_2010_v.1.0_EN_FINAL.pdf. Cited 07 October 2009

  • Yamada M, Kinoshita K, Kurosawa M et al (2007) Analysis of exogenous nandrolone metabolite in horse urine by gas chromatography/combustion/carbon isotope ratio mass spectrometry. J Pharmaceut Biomed Anal 45:654–658

    Google Scholar 

  • Ziegenfuss TN, Berardi JM, Lowery LM (2002) Effects of prohormone supplementation in humans: a review. Can J Appl Physiol 27:628–646

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hemmersbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hemmersbach, P., Große, J. (2010). Nandrolone: A Multi-Faceted Doping Agent. In: Thieme, D., Hemmersbach, P. (eds) Doping in Sports: Biochemical Principles, Effects and Analysis. Handbook of Experimental Pharmacology, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79088-4_6

Download citation

Publish with us

Policies and ethics