Skip to main content

Analytical Models with Stress Functions

  • Chapter
Modeling of Adhesively Bonded Joints

Abstract

The interface stress distributions in adhesive butt joints subjected to tensile and cleavage loadings are described using two-dimensional theory of elasticity. Interface stress distributions of adhesive band butt joints are also discussed. In addition, the effects of adhesive Young’s modulus and the adhesive thickness on the interface stress distributions are shown. For adhesive tubular butt joints, the effects on the interface stress distributions are described using axi-symmetrical theory of elasticity. It is shown that singular stresses occur at the edges of the interfaces. It is also observed that the singular stresses decrease as the adhesive Young’s modulus increases and the adhesive thickness decreases. Finally, a method of stress analysis for bonded shrink fitted joints is described and it is demonstrated that the strengths of bonded shrink fitted joints are larger than those of shrink fitted joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson T. and Biel A. (2006) On the Effective Constitutive Properties of a Thin Adhesive Layer Loaded in Peel. Int J Frac 141: 227–246

    Article  Google Scholar 

  2. Chen D. and Cheng S. (1992) Torsional Stress in Tubular Lap Joints. Int J Solids Struct 29(7): 845–853

    Article  MATH  Google Scholar 

  3. Cheng J., Wu X., Li G., Pang S. and Taheri F. (2007) Design and Analysis of a Smart Composite Pipe Joint System Integrated with Piezoelectric Layers Under Bending. Int J Solids Struct 44: 298–319

    Article  MATH  Google Scholar 

  4. Ding S. and Kumosa M. (1994) Singular Stress Behavior at an Adhesive Interface Corner. Eng Frac Mech 47(4): 503–519

    Article  Google Scholar 

  5. Hollaway L., Romhi A. and Gunn M. (1990) Optimisation of Adhesive Bonded Composite Tubular Sections. Compos Struct 16: 125–170

    Article  Google Scholar 

  6. Kim W. T. and Lee D. G. (1995) Torque Transmission Capabilities of Adhesively Bonded Tubular Lap Joints for Composite Drive Shafts. Compos Struct 30: 229–240

    Article  Google Scholar 

  7. Öchsner A. and Grácio J. (2007) An Evaluation of the Elastic Properties of an Adhesive Layer Using the Tensile-Butt Joint Test: Procedures and Error Estimates. Int J Adhes Adhes 27: 129–135

    Article  Google Scholar 

  8. Öchsner A., Stasiek M., Mishuris G. and Grácio J. (2007) A New Evaluation Procedure for the Butt-Joint Test of Adhesive Technology: Determination of the Complete Set of Linear Elastic Constants. Int J Adhes Adhes 27: 703–711

    Article  Google Scholar 

  9. Pugno N. and Carpinteri A. (2003) Tubular Adhesive Joints Under Axial Load. Trans ASME 70: 832–839

    MATH  Google Scholar 

  10. Reedy Jr E. D. (1993) Asymptotic Interface Corner Solutions for Butt Tensile Joints. Int J Solids Struct 30(6): 767

    Article  Google Scholar 

  11. Reedy Jr E. D. and Guess T. R. (1993) Comparison of Butt Tensile Strength Data with Interface Corner Stress Intensity Factor Prediction. Int J Solids Struct 30(21): 2929–2936

    Article  Google Scholar 

  12. Sawa T., Ishikawa H. and Temma K. (1987) Three-Dimensional Stress Analysis of Adhesive Butt Joints Subjected to Tensile Loads (The Case Where Adherends are Two Hollow Cylinders) Transactions of JSME, Part A 53(492): 1685–1691

    Google Scholar 

  13. Sawa T., Nakano Y. and Temma K. (1987) A Stress Analysis of Butt Adhesive Joints Under Torsional Loads. J Adhes 24: 245–258

    Article  Google Scholar 

  14. Sawa T., Temma K. and Ishikawa H. (1989) Three-Dimensional Stress Analysis of Adhesive Butt Joints of Solid Cylinders Subjected to External Tensile Loads. J Adhes 31: 33–43

    Article  Google Scholar 

  15. Sawa T., Temma K., Nishigaya T. and Ishikawa H. (1995) A Two-Dimensional Stress Analysis of Adhesive Butt Joints of Dissimilar Adherends Subjected to Tensile Loads. J Adhes Sci Technol 9(2): 215–236

    Article  Google Scholar 

  16. Sawa T. and Uchida H. (1997) Two-Dimensional Stress Analysis and Strength Evaluation of Band Adhesive Butt Joints Subjected to Tensile Loads. J Adhes Sci Technol 11(6): 811–833

    Article  Google Scholar 

  17. Sawa T., Yoneno M. and Motegi Y. (2001) J. Adhes Sci Technol 15(1): 23–42

    Article  Google Scholar 

  18. Seo D. W. and Lim J. K. (2005) Tensile, Bending and Shear Strength Distributions of Adhesive-Bonded Butt Joint Specimens. Compos Sci Technol 65: 1421–1427

    Article  Google Scholar 

  19. Shahid M. and Hashim S. A. (2002) Effect of Surface Roughness on the Strength of Cleavage Joints. Int J Adhes Adhes 22: 235–244

    Article  Google Scholar 

  20. Temma K., Sawa T. and Iwata A. (1990) Two-Dimensional Stress Analysis of Adhesive Butt Joints Subjected to Cleavage Loads. Int J Adhes Adhes 10(4): 285–293

    Article  Google Scholar 

  21. Temma K., Sawa T., Nishigaya T. and Ichida H. (1994) Two-Dimensional Stress Analysis and Strength of Band Adhesive Butt Joints of Dissimilar Adherends Subjected to External Bending Moments. JSME Int J Series A 37(3): 246

    Google Scholar 

  22. Thomsen O. T. (1992) Elasto-Static and Elasto-Plastic Stress Analysis of Adhesive Bonded Tubular Lap Joints. Compos Struct 21: 249–259

    Article  Google Scholar 

  23. Wright M. D. (1978) Compos 9(4): 259–262

    Article  Google Scholar 

  24. Xu L. R., Sengupta S. and Kuai H. (2004) An Experimental and Numerical Investigation of Adhesive Bonding Strengths of Polymer Materials. Int J Adhes Adhes 24: 455–460

    Article  Google Scholar 

  25. Zanni-Deffarges M. P. and Shanahan M. E. R. (1993) Evaluation of Adhesive Shear Modulus in a Torsional Joint: Influence of Ageing. Int J Adhes Adhes 13(1): 41–45

    Article  Google Scholar 

  26. Zhou H. and Rao M. D. (1993) Vicoelastic Analysis of Bonded Tubular Joints Under Torsion. Int J Solids Struct 30(16): 2199–2211

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sawa, T. (2008). Analytical Models with Stress Functions. In: da Silva, L.F.M., Öchsner, A. (eds) Modeling of Adhesively Bonded Joints. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79056-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79056-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79055-6

  • Online ISBN: 978-3-540-79056-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics