Skip to main content

BCAD: A Bayesian CAD System for Geometric Problems Specification and Resolution

  • Chapter
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 46))

  • 1072 Accesses

Abstract

We present “BCAD”, a Bayesian CAD modeller for geometric problem definition and resolution. This modeller provides tools for (i) modelling geometric uncertainties and constraints, and (ii) solving inverse geometric problems while taking into account the propagation of these uncertainties. The proposed method may be seen as a generalization of constraint-based approaches in which we explicitly model geometric uncertainties. Using our methodology, a geometric constraint is expressed as a probability distribution on the system parameters and the sensor measurements instead of as a simple equality or inequality. To solve geometric problems in this framework, we propose the Monte Carlo Simultaneous Estimation and Maximization (MCSEM) algorithm as a resolution technique able to adapt to problem complexity. Using three examples, we show how to apply our approach using the BCAD system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alami, R., Simeon, T.: Planning robust motion strategies for mobile robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, San Diego, California, vol. 2, pp. 1312–1318 (1994)

    Google Scholar 

  • Bar-Shalom, Y., Fortmann, T.E.: Tracking and D ata Association. Academic Press, London (1988)

    MATH  Google Scholar 

  • Coué, C., Fraichard, T., Bessière, P., Mazer, E.: Using bayesian programming for multi-sensor multi-target tracking in automotive applications. In: Proceedings of IEEE International Conference on Robotics and Automation, Taipei (TW) September (2003)

    Google Scholar 

  • Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Detroit, MI May (1999)

    Google Scholar 

  • Geweke, J.: Monte Carlo simulation and numerical integration. In: Amman, H., Kendrick, D., Rust, J. (eds.) Handbook of Computational Economics, vol. 13, pp. 731–800. Elsevier North-Holland, Amsterdam (1996)

    Google Scholar 

  • Gondran, M., Minoux, M.: Graphes et Algorithmes, Eyrolle, Paris (1990)

    Google Scholar 

  • Grefenstette, J.J.: Credit assignment in rule discovery systems based on genetic algorithms. Machine Learning 3, 225–245 (1988)

    Google Scholar 

  • Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  • Jensen, F.: Bayesian N etworks and Decision G raphs. In: Statistics for Engineering and Information Science, Springer, Heidelberg (2001)

    Google Scholar 

  • Keller, A.: The fast calculation of form factors using low discrepancy point sequence. In: Proc. of the 12th Spring Conf. on Computer Graphics, Bratislava, pp. 195–204 (1996)

    Google Scholar 

  • Lozano-Pérez, T.: A simple motion-planning algorithm for general robot manipulators. IEEE J. of Robotics and Automation 3(3), 224–238 (1987)

    Article  Google Scholar 

  • MacKay, D.G.C.: Introduction to monte carlo methods. In: Jordan, M. (ed.) Proc. of an Erice summer school (1996)

    Google Scholar 

  • Mazer, E., Ahuactzin, J., Bessière, P.: The Ariadne’s Clew algorithm. J. Artif. Intellig. Res (JAIR) 9, 295–316 (1998)

    MATH  Google Scholar 

  • Mekhnacha, K.: Méthodes probabilistes Bayesiennes pour la prise en compte des incertitudes géométriques: application à la CAO-robotique. Thèse de doctorat, Inst. Nat. Polytechnique de Grenoble, Grenoble, France (July 1999)

    Google Scholar 

  • Mekhnacha, K., Mazer, E., Bessière, P.: A robotic CAD system using a Bayesian framework. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2000), Takamatsu, Japan, October 2000, vol. 3, pp. 1597–1604 (2000)

    Google Scholar 

  • Mekhnacha, K., Mazer, E., Bessière, P.: The design and implementation of a Bayesian CAD modeler for robotic applications. Advanced Robotics, the Int. J. of the Robotics Society of Japan 15(1), 45–70 (2001)

    Google Scholar 

  • Mekhnacha, K., Ahuactzin, J., Bessière, P., Mazer, E., Smail, L.: A unifying framework for exact and approximate bayesian inference. Research Report RR-5797, INRIA (January 2006)

    Google Scholar 

  • Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Magazine 9(2), 61–74 (1988)

    Google Scholar 

  • Neal, R.M.: Probabilistic inference using Markov Chain Monte Carlo methods. Research Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto (1993)

    Google Scholar 

  • Owen, J.C.: Constraints on simple geometry in two and three dimensions. Int. J. of Computational Geometry and Applications 6(4), 421–434 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Puget, P.: Vérification-Correction de programme pour la prise en compte des incertitudes en programmation automatique des robots. Thèse de doctorat, Inst. Nat. Polytechnique de Grenoble, Grenoble, France (1989)

    Google Scholar 

  • Sanderson, A.C.: Assemblability based on maximum likelihood configuration of tolerances. In: Proc. of the IEEE Symposium on Assembly and Task Planning, Marina del Rey, CA (August 1997)

    Google Scholar 

  • Taylor, R.: A synthesis of manipulator control programs from task-level specifications. Ph.d thesis, Stanford University, Computer Science Department (July 1976)

    Google Scholar 

  • Yguel, M., Tay, C., Mekhnacha, K., Laugier, C.: Velocity estimation on the bayesian occupancy filter for multi-target tracking. Research Report RR-5836, INRIA (January 2006)

    Google Scholar 

  • Zhang, Z., Augeras, O.: 3D Dynamic Scene Analysis: A Stereo Based Approach. Springer, Berlin, Heidelberg (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Bessière Christian Laugier Roland Siegwart

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mekhnacha, K., Bessière, P. (2008). BCAD: A Bayesian CAD System for Geometric Problems Specification and Resolution. In: Bessière, P., Laugier, C., Siegwart, R. (eds) Probabilistic Reasoning and Decision Making in Sensory-Motor Systems. Springer Tracts in Advanced Robotics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79007-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79007-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79006-8

  • Online ISBN: 978-3-540-79007-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics